Self-orienting in human and machine learning – Nature.com
James, W., Burkhardt, F., Bowers, F. & Skrupskelis, I. K. The Principles of Psychology Vol. 1 (Macmillan London, 1890).
Belk, R. W. Extended self in a digital world. J. Consum. Res. 40, 477500 (2013).
Article Google Scholar
Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 4957 (2007).
Article PubMed Google Scholar
Dennett, D. C. in Self and Consciousness 111123 (Psychology Press, 2014).
Sui, J. & Humphreys, G. W. The integrative self: how self-reference integrates perception and memory. Trends Cogn. Sci. 19, 719728 (2015).
Article PubMed Google Scholar
Blanke, O. & Metzinger, T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13, 713 (2009).
Article PubMed Google Scholar
Bem, D. J. Self-perception: an alternative interpretation of cognitive dissonance phenomena. Psychol. Rev. 74, 183 (1967).
Article CAS PubMed Google Scholar
McConnell, A. R. The multiple self-aspects framework: self-concept representation and its implications. Personal. Soc. Psychol. Rev. 15, 327 (2011).
Article Google Scholar
Sanchez-Vives, M. V. & Slater, M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332339 (2005).
Article CAS PubMed Google Scholar
Strawson, G. The sense of the self. Lond. Rev. Books 18, 126152 (1996).
Google Scholar
Dennett, D. C. in Science Fiction and Philosophy: From Time Travel to Superintelligence (ed. Schneider, S.) 5568 (John Wiley & Sons, 2016).
Nozick, R. Philosophical Explanations (Harvard Univ. Press, 1981).
Perry, J. Can the self divide? J. Philos. 69, 463488 (1972).
Article Google Scholar
Moulin-Frier, C. et al. DAC-h3: a proactive robot cognitive architecture to acquire and express knowledge about the world and the self. IEEE Trans. Cogn. Dev. Syst. 10, 10051022 (2017).
Article Google Scholar
Johnson, M. & Demiris, Y. Perceptual perspective taking and action recognition. Int. J. Adv. Rob. Syst. 2, 32 (2005).
Article Google Scholar
Paul, L., Ullman, T. E., De Freitas, J. & Tenenbaum, J. Reverse-engineering the self. Preprint at https://doi.org/10.31234/osf.io/vzwrn (2023).
Andrychowicz, M. et al. Hindsight experience replay. Adv. Neural Inform. Process. Syst. 30, 50485058 (2017).
Hausknecht, M. & Stone, P. in 2015 AAAI Fall Symposium Series 2937 (AAAI, 2015).
Schaul, T., Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay. Preprint at https://doi.org/10.48550/arXiv.1511.05952 (2015).
Van Hasselt, H., Guez, A. & Silver, D. in Proc. AAAI Conference on Artificial Intelligence 20942100 (AAAI, 2016).
Wang, Z. et al. in International Conference on Machine Learning 19952003 (PMLR, 2016).
Mnih, V. et al. Playing Atari with deep reinforcement learning. Preprint at https://doi.org/10.48550/arXiv.1312.5602 (2013).
Kaiser, L. et al. Model-based reinforcement learning for Atari. Preprint at https://doi.org/10.48550/arXiv.1903.00374 (2019).
Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L. & Efros, A. A. Investigating human priors for playing video games. Preprint at https://doi.org/10.48550/arXiv.1802.10217 (2018).
Tsividis, P. A. et al. Human-level reinforcement learning through theory-based modeling, exploration, and planning. Preprint at https://doi.org/10.48550/arXiv.2107.12544 (2021).
Tsividis, P. A., Pouncy, T., Xu, J. L., Tenenbaum, J. B. & Gershman, S. J. in 2017 AAAI Spring Symposium Series 643646 (AAAI, 2017).
Uhde, C., Berberich, N., Ramirez-Amaro, K. & Cheng, G. in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 80818086 (IEEE, 2020).
Lanillos, P. & Cheng, G. Robot self/other distinction: active inference meets neural networks learning in a mirror. Preprint at https://doi.org/10.48550/arXiv.2004.05473 (2020).
Demiris, Y. & Meltzoff, A. The robot in the crib: a developmental analysis of imitation skills in infants and robots. Infant Child Dev. Int. J. Res. Pract. 17, 4353 (2008).
Article Google Scholar
Piaget, J. The construction of reality in the child. J. Consult. Psychol. 19, 77 (1955).
Article Google Scholar
Thrun, S. in Robotics and Cognitive Approaches to Spatial Mapping 1341 (Springer, 2008).
Silver, D., Singh, S., Precup, D. & Sutton, R. S. Reward is enough. Artif. Intell. 299, 103535 (2021).
Article Google Scholar
Botvinick, M. et al. Building machines that learn and think for themselves. Behav. Brain Sci. 40, E255 (2017).
Botvinick, M. et al. Building machines that learn and think for themselves: Commentary on Lake et al., Behavioral and Brain Sciences, 2017. Preprint at https://doi.org/10.48550/arXiv.1711.08378 (2017).
Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and done? Optimal decisions from very few samples. Cogn. Sci. 38, 599637 (2014).
Article PubMed Google Scholar
Reed, S. et al. A generalist agent. Trans. Mach. Learn. Res. https://openreview.net/forum?id=1ikK0kHjvj (2022).
Schrittwieser, J. et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 588, 604609 (2020).
Article CAS PubMed Google Scholar
Pan, X. et al. How you act tells a lot: privacy-leakage attack on deep reinforcement learning. Preprint at https://doi.org/10.48550/arXiv.1904.11082 (2019).
Brockman, G. et al. OpenAI Gym. Preprint at https://doi.org/10.48550/arXiv.1606.01540 (2016).
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16, 225237 (2009).
Article PubMed Google Scholar
Hill, A., Raffin, A., Ernestus, M., Gleave, A. & Kanervisto, A. stable-baselines. GitHub https://github.com/Stable-Baselines-Team/stable-baselines (2018).
Dhariwal, P. et al. Openai baselines. GitHub https://github.com/openai/baselines (2017).
Weitkamp, L. option-critic-pytorch. GitHub https://github.com/lweitkamp/option-critic-pytorch (2019).
See more here:
Self-orienting in human and machine learning - Nature.com