Archive for the ‘Machine Learning’ Category

Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19 – DocWire News

This article was originally published here

PLoS One. 2021 Apr 1;16(4):e0249285. doi: 10.1371/journal.pone.0249285. eCollection 2021.

ABSTRACT

BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic has affected millions of people across the globe. It is associated with a high mortality rate and has created a global crisis by straining medical resources worldwide.

OBJECTIVES: To develop and validate machine-learning models for prediction of mechanical ventilation (MV) for patients presenting to emergency room and for prediction of in-hospital mortality once a patient is admitted.

METHODS: Two cohorts were used for the two different aims. 1980 COVID-19 patients were enrolled for the aim of prediction ofMV. 1036 patients data, including demographics, past smoking and drinking history, past medical history and vital signs at emergency room (ER), laboratory values, and treatments were collected for training and 674 patients were enrolled for validation using XGBoost algorithm. For the second aim to predict in-hospital mortality, 3491 hospitalized patients via ER were enrolled. CatBoost, a new gradient-boosting algorithm was applied for training and validation of the cohort.

RESULTS: Older age, higher temperature, increased respiratory rate (RR) and a lower oxygen saturation (SpO2) from the first set of vital signs were associated with an increased risk of MV amongst the 1980 patients in the ER. The model had a high accuracy of 86.2% and a negative predictive value (NPV) of 87.8%. While, patients who required MV, had a higher RR, Body mass index (BMI) and longer length of stay in the hospital were the major features associated with in-hospital mortality. The second model had a high accuracy of 80% with NPV of 81.6%.

CONCLUSION: Machine learning models using XGBoost and catBoost algorithms can predict need for mechanical ventilation and mortality with a very high accuracy in COVID-19 patients.

PMID:33793600 | DOI:10.1371/journal.pone.0249285

See the rest here:
Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19 - DocWire News

Machine Learning Operationalization Software Market 2021 Is Booming Across the Globe by Share, Size, Growth, Segments and Forecast to 2027 | Top…

The Global Machine Learning Operationalization Software Market report dissects the complex fragments of the market in an easy to read manner. This report covers drivers, restraints, challenges, and threats in the Machine Learning Operationalization Software market to understand the overall scope of the market in a detailed yet concise manner. Additionally, the market report covers the top-winning strategies implemented by major industry players and technological advancements that steers the growth of the market.

Key Players Landscape in the Machine Learning Operationalization Software Report

MathWorksSASMicrosoftParallelMAlgorithmiaH20.aiTIBCO SoftwareSAPIBMDominoSeldonDatmoActicoRapidMinerKNIME

Note: Additional or any specific company of the market can be added in the list at no extra cost.

Here below are some of the details that are included in the competitive landscape part of the market report:

This market research report enlists the governments and regulations that can provide remunerative opportunities and even create pitfalls for the Machine Learning Operationalization Software market. The report confers details on the supply & demand scenario in the market while covering details about the product pricing factors, trends, and profit margins that helps a business/company to make crucial business decisions such as engaging in creative strategies, product development, mergers, collaborations, partnerships, and agreements to expand the market share of the company.

Get Free Exclusive Sample report @ https://dataintelo.com/request-sample/?reportId=60428

An Episode of Impact of COVID-19 Pandemic in the Machine Learning Operationalization Software Market

The COVID-19 pandemic had disrupted the global economy. This is due to the fact that the government bodies had imposed lockdown on commercial and industrial spaces. However, the market is anticipated to recover soon and is anticipated to reach the pre-COVID level by the end of 2021 if no further lockdown is imposed across the globe.

In this chapter of the report, DataIntelo has provided in-depth insights on the impact of COVID-19 on the market. This chapter covers the long-term challenges ought to be faced due to the pandemic while highlights the explored opportunities that benefited the industry players globally. The market research report confers details about the strategies implemented by industry players to survive the pandemic. Meanwhile, it also provides details on the creative strategies that companies implemented to benefit out of pandemic. Furthermore, it lays out information about the technological advancements that were carried out during the pandemic to combat the situation.

What are the prime fragments of the market report?

The Machine Learning Operationalization Software report can be segmented into products, applications, and regions. Here below are the details that are going to get covered in the report:

Products

Cloud BasedOn Premises

Applications

BFSIEnergy and Natural ResourcesConsumer IndustriesMechanical IndustriesService IndustriesPublice SectorsOther

Regions

North America, Europe, Asia Pacific, Middle East & Africa, and Latin America

Note: A country of your own choice can be added to the list at no extra cost. If more than one country needs to be added, the research quote varies accordingly.

Buy the complete report in PDF format: https://dataintelo.com/checkout/?reportId=60428

Below is the TOC of the report:

Executive Summary

Assumptions and Acronyms Used

Research Methodology

Machine Learning Operationalization Software Market Overview

Global Machine Learning Operationalization Software Market Analysis and Forecast by Type

Global Machine Learning Operationalization Software Market Analysis and Forecast by Application

Global Machine Learning Operationalization Software Market Analysis and Forecast by Sales Channel

Global Machine Learning Operationalization Software Market Analysis and Forecast by Region

North America Machine Learning Operationalization Software Market Analysis and Forecast

Latin America Machine Learning Operationalization Software Market Analysis and Forecast

Europe Machine Learning Operationalization Software Market Analysis and Forecast

Asia Pacific Machine Learning Operationalization Software Market Analysis and Forecast

Asia Pacific Machine Learning Operationalization Software Market Size and Volume Forecast by Application

Middle East & Africa Machine Learning Operationalization Software Market Analysis and Forecast

Competition Landscape

If you have any doubt about the report, please feel free to contact us @ https://dataintelo.com/enquiry-before-buying/?reportId=60428

About DataIntelo

DataIntelo has extensive experience in the creation of tailored market research reports in several industry verticals. We cover in-depth market analysis which includes producing creative business strategies for the new entrants and the emerging players of the market. We take care that our every report goes through intensive primary, secondary research, interviews, and consumer surveys. Our company provides market threat analysis, market opportunity analysis, and deep insights into the current and market scenario.

To provide the utmost quality of the report, we invest in analysts that hold stellar experience in the business domain and have excellent analytical and communication skills. Our dedicated team goes through quarterly training which helps them to acknowledge the latest industry practices and to serve the clients with the foremost consumer experience.

Contact Info:

Name: Alex Mathews

Address: 500 East E Street, Ontario,

CA 91764, United States.

Phone No: USA: +1 909 414 1393

Email:[emailprotected]

Website:https://dataintelo.com

Read the original here:
Machine Learning Operationalization Software Market 2021 Is Booming Across the Globe by Share, Size, Growth, Segments and Forecast to 2027 | Top...

Global Machine Learning-as-a-Service (MLaaS) Market Development Strategy, Manufacturers Analysis, COVID-19 impact, and Forecast 2020-2025 The Bisouv…

Global Machine Learning-as-a-Service (MLaaS) Market SWOT Analysis | Growth Analysis Research Report 2020 | Top Key players update, COVID-19 impact analysis and Forecast 2025

Our latest research report entitled Global Machine Learning-as-a-Service (MLaaS) Market report 2020-2025 provides comprehensive and deep insights into the market dynamics and growth of Machine Learning-as-a-Service (MLaaS). The latest information on market risks, industry chain structure, Machine Learning-as-a-Service (MLaaS) cost structure, and opportunities are offered in this report. The entire industry is fragmented based on geographical regions, a wide range of applications, and Machine Learning-as-a-Service (MLaaS) types. The past, present, and forecast market information will lead to investment feasibility by studying the crucial Machine Learning-as-a-Service (MLaaS) growth factors. The SWOT analysis of leading Machine Learning-as-a-Service (MLaaS) players (SAS Institute Inc., Google LLC, Hewlett Packard Enterprise Development LP, Artificial Solutions)will help the readers in analyzing the opportunities and threats to the market development.

Download FREE Sample PDF copy of the Report: https://www.reportspedia.com/report/technology-and-media/2020-2025-global-machine-learning-as-a-service-(mlaas)-market-reportproduction-and-consumption-professional-analysis-(impact-of-covid-19)/79118#request_sample

NOTE: Global Machine Learning-as-a-Service (MLaaS) report can be customized according to the users requirements.

Top Leading Players covered in this Report:

Initially, the report illustrates the fundamental overview of Machine Learning-as-a-Service (MLaaS) on basis of the product description, classification, cost structures, and type. The past, present, and forecast Machine Learning-as-a-Service (MLaaS) market statistics are offered. The market size analysis is conducted on the basis of Machine Learning-as-a-Service (MLaaS) market concentration, value and volume analysis, growth rate, and emerging market segments.

A complete view of the Machine Learning-as-a-Service (MLaaS) industry is provided based on definitions, product classification, applications, major players driving the global Machine Learning-as-a-Service (MLaaS) market share and revenue. The information in the form of graphs, pie charts will lead to an easy analysis of an industry. The market share of top leading companies, their plans, and business policies, growth factors will help other players in gaining useful business tactics.

Get an Exclusive Discount on this Report: https://www.reportspedia.com/discount_inquiry/discount/79118

The foremost regions analyzed in this study include North America (United States, Canada, Mexico, and Others), Europe (Germany, France, Russia, Italy, Netherlands, and Others), South America (Columbia, Brazil, Argentina, and Others), Asia-Pacific (China, Japan, Korea, India, and Others), Middle East & Africa (Saudi Arabia, UAE, Egypt, South Africa, and Others) and rest of the world.

On the basis of Types, the Machine Learning-as-a-Service (MLaaS) market is primarily split into,

On the basis of applications, the Machine Learning-as-a-Service (MLaaS) market is primarily split into,

If you have any questions Or you need any customization in the report? Make an inquiry here:https://www.reportspedia.com/report/technology-and-media/2020-2025-global-machine-learning-as-a-service-(mlaas)-market-reportproduction-and-consumption-professional-analysis-(impact-of-covid-19)/79118#inquiry_before_buying

Comprehensive research methodology which drives the Machine Learning-as-a-Service (MLaaS) market statistics can be structured as follows:

The leading Machine Learning-as-a-Service (MLaaS) players, their company profile, growth rate, market share, and global presence are covered in this report. The competitive Machine Learning-as-a-Service (MLaaS) scenario on the basis of price and gross margin analysis is studied in this report. All the key factors like consumption volume, price trends, market share, import-export details, manufacturing capacity are included in this report. The forecast market information will lead to strategic plans and an informed decision-making process. The emerging Machine Learning-as-a-Service (MLaaS) market sectors, mergers, and acquisitions, market risk factors are analyzed. Lastly, the research methodology and data sources are presented

Segment 1, states the objectives of Machine Learning-as-a-Service (MLaaS) market, overview, introduction, product definition, development aspects, and industry presence;

Segment 2, elaborates the Machine Learning-as-a-Service (MLaaS) market based on key players, their market share, sales volume, company profiles, Machine Learning-as-a-Service (MLaaS) competitive market scenario, and pricing

Segment 3, analyzes the Machine Learning-as-a-Service (MLaaS) market at a regional level based on sales ratio and market size from 2015 to 2019;

Segment 4, 5, 6 and 7, explains the Machine Learning-as-a-Service (MLaaS) market at the country level based on product type, applications, revenue analysis;

Segment 8 and 9, states the Machine Learning-as-a-Service (MLaaS) industry overview during past, present, and forecast period from 2020 to 2025;

Segment 10 and 11, describes the market status, plans, expected growth based on regions, type and application in detail for a forecast period of 2020-2025;

Segment 12, covers the marketing channels, dealers, manufacturers, traders, distributors, consumers of Machine Learning-as-a-Service (MLaaS).

Get Table of Contents with Charts, Figures & Tables:https://www.reportspedia.com/report/technology-and-media/2020-2025-global-machine-learning-as-a-service-(mlaas)-market-reportproduction-and-consumption-professional-analysis-(impact-of-covid-19)/79118#table_of_contents

Here is the original post:
Global Machine Learning-as-a-Service (MLaaS) Market Development Strategy, Manufacturers Analysis, COVID-19 impact, and Forecast 2020-2025 The Bisouv...

CW Innovation Awards: Jio Platforms taps machine learning to manage telco network – ComputerWeekly.com

The telecommunication networks of the future will not only have to support millions of 4G and 5G subscribers, but must also manage a huge number of connected internet-of-things (IoT) devices. With the need to meet exponentially growing data and signalling requirements, a new approach is needed to cope with the unpredictable and surging demands placed on modern networks.

Jio Platforms, a subsidiary of Reliance Industries, turned to machine learning to autonomously manage its large communication infrastructure. With a modest budget of $1m, Jio Platforms designed and implemented Atom, an artificial intelligence-based platform, from scratch within 12 months to process more than 500 billion records a day.

At its heart, Atom, which helped Jio Platforms clinch the telecoms category in the Computer Weekly Innovation Awards APAC, is a disaggregated data lake platform tailored to enable smarter network operations using machine learning.

Atom an acronym for Adaptive Troubleshooting, Operations and Management was designed to collect and process a massive volume of network-centric statistics and events. The goal was to proactively detect anomalous network patterns and facilitate root-cause analysis and resolution before network problems even impact operations.

Jio Platforms said Atom provides code-free operational insights, data binding and correlation. Built with automated service-level agreement (SLA) management capabilities in the workflow engine, it orchestrates operational tasks between systems for organisational transparency.

It can also offer instant notifications and live data tracking from the vast amount of data collected using virtual probes and various network functions. This is made possible by a data ingestion engine designed to process billions of documents. Immediate action therefore becomes possible, as opposed to the traditional approach of only reacting to problems.

The Atom platform provides multiple ways to create reports and dashboards on the fly. Detection includes comparisons with baseline data and monitoring of operational metrics. Once a relevant condition is identified, the system analyses the data by correlating, searching for errors, or deriving the real context of the erroneous scenario.

But why did Jio Platforms begin building this first-of-its-kind system instead of relying on a suitable commercial solution? The company said it has always worked to reduce dependence on external providers and cited the cost-related advantages of developing an in-house solution that relies on software running on standard servers. Indeed, because Atom avoids the use of proprietary probes, vendor dependencies were also eliminated on that front.

Building the entire system in-house meant Jio Platforms could focus on innovation and adopt tried-and-true practices, such as developing an open solution that interoperates well with third-party systems. Atom conforms with various standards from the European Telecommunications Standards Institute and 3GPP and has the versatility to support network functions from the edge, core, on the various layers of the IP stack, and IoT applications.

Because crucial software components are developed from the ground up, the team could incorporate high-performance considerations and state-optimised designs for application resilience from the start. Jio Platforms said Atom has real-time analytics capabilities to process 50 million records every second, as well as a record capacity of over 10 trillion with support for more than 100PB of storage.

The platform has unique anomaly detection capabilities that can drill down to individual end-nodes, whether a physical server, virtual machine or containerised service, to precisely identify problematic elements within the network.

Also, the system can understand and correlate counters and logs from the radio access network (RAN) and other systems to identify the causes of failure and take corrective actions.

Telecommunications companies operate with very large network infrastructure with large volumes of data traffic, said the team. Processing and analysing this data with the help of scientific algorithms, methodologies and tools is the need of the hour.

It was with this in mind that Jio Platforms built Atom to enable actionable intelligence from network data in real time.

Continuous demand for scaling the telecom network is to be expected over the next few years as the colossal data volumes driven by 5G become a reality. More than ever, operational procedures will have to be automated to meet the ever-growing needs of modern networks and for telecommunication firms to stay relevant.

Follow this link:
CW Innovation Awards: Jio Platforms taps machine learning to manage telco network - ComputerWeekly.com

inSearchX Partners with Strategic Vision’s Using Machine Learning to Help Customers Find their Ideal Car With Uncanny Accuracy – Business Wire

NASHVILLE, Tenn.--(BUSINESS WIRE)--Startup inSearchX and advisory services firm Strategic Vision announce they have partnered to deliver an exciting vehicle-matching technology that pairs new vehicle shoppers with their ideal vehicle match. To consult their vehicle "matchmaker," shoppers can AskOtto.

AskOtto is an interactive, anonymous communication platform that aligns your mobility needs and preferences with just a few simple questions, based on an analysis of millions of vehicle owners who have completed surveys for Strategic Vision since 1994. Strategic Vision specializes in understanding human decision-making processes through ValueCentered psychology, which connects product or service attributes to the underlying ValueEmotions that drive all decisions. In testing, shoppers found the quiz not only included their current vehicle, but also others they were already interested in as well as new, intriguing matches. One recent user described the quiz results as uncanny and asked what magic powers this technology?

We are very excited about the auto quiz we have developed with Strategic Vision; consumers today struggle with growing complexity of vehicle choices. says Eric Brown, CEO of inSearchX, and creator of AskOtto. By utilizing the millions of consumer vehicle experience studies conducted by Strategic Vision the mystery of finding the best car fit is resolved.

This powerful combination of psychological insights and cutting-edge technology creates a valuable tool that cuts through an increasingly complicated automotive landscape to connect new car shoppers with the best vehicle for their physical and emotional needs. Strategic Vision specializes in measuring what customers Love. explains Strategic Vision President Alexander Edwards, Taking that experience and putting it in the hands of the customer to help make a difficult process easier just makes sense.

After a shopper receives their top matches, they can use AskOtto to search local dealers' inventory near them. If they have any questions about a vehicle or offer, AskOtto connects them anonymously to a local dealer sales team who can provide timely answers.

To find your perfect vehicle match, visit: http://www.askotto.com/quiz

ABOUT INSEARCHX: inSearchX has developed an Open Dialog Advertising ODA Platform, branded as AskOtto. The AskOtto ODA platform is utilized by media companies, advertising agencies and other automotive marketers including local dealerships and national manufacturers to optimize advertising performance and the consumer retail experience. The platform provides consumers a one-click vehicle discovery and anonymous communication resource to find the perfect vehicle match and communicate with local car dealers remotely and privately. Visit http://www.insearchx.com, or email info@insearchx.com for more information.

ABOUT STRATEGIC VISION: Strategic Vision has spent decades helping companies understand human behavior and decision-making patterns in any field. By connecting product or service experience to the ValueEmotions that drive all decision-making, Strategic Vision connects the rational and emotional to understand customer advocacy, commitment, and loyalty. Please visit http://www.strategicvision.com for more information.

See more here:
inSearchX Partners with Strategic Vision's Using Machine Learning to Help Customers Find their Ideal Car With Uncanny Accuracy - Business Wire