The Bot Decade: How AI Took Over Our Lives in the 2010s – Popular Mechanics
Bots are a lot like humans: Some are cute. Some are ugly. Some are harmless. Some are menacing. Some are friendly. Some are annoying ... and a little racist. Bots serve their creators and society as helpers, spies, educators, servants, lab technicians, and artists. Sometimes, they save lives. Occasionally, they destroy them.
In the 2010s, automation got better, cheaper, and way less avoidable. Its still mysterious, but no longer foreign; the most Extremely Online among us interact with dozens of AIs throughout the day. That means driving directions are more reliable, instant translations are almost good enough, and everyone gets to be an adequate portrait photographer, all powered by artificial intelligence. On the other hand, each of us now sees a personalized version of the world that is curated by an AI to maximize engagement with the platform. And by now, everyone from fruit pickers to hedge fund managers has suffered through headlines about being replaced.
Humans and tech have always coexisted and coevolved, but this decade brought us closer togetherand closer to the futurethan ever. These days, you dont have to be an engineer to participate in AI projects; in fact, you have no choice but to help, as youre constantly offering your digital behavior to train AIs.
So heres how we changed our bots this decade, how they changed us, and where our strange relationship is going as we enter the 2020s.
All those little operational tweaks in our day come courtesy of a specific scientific approach to AI called machine learning, one of the most popular techniques for AI projects this decade. Thats when AI is tasked not only with finding the answers to questions about data sets, but with finding the questions themselves; successful deep learning applications require vast amounts of data and the time and computational power to self-test over and over again.
Deep learning, a subset of machine learning, uses neural networks to extract its own rules and adjust them until it can return the right results; other machine learning techniques might use Bayesian networks, vector maps, or evolutionary algorithms to achieve the same goal.
In January, Technology Reviews Karen Hao released an exhaustive analysis of recent papers in AI that concluded that machine learning was one of the defining features of AI research this decade. Machine learning has enabled near-human and even superhuman abilities in transcribing speech from voice, recognizing emotions from audio or video recordings, as well as forging handwriting or video, Hao wrote. Domestic spying is now a lucrative application for AI technologies, thanks to this powerful new development.
Haos report suggests that the age of deep learning is finally drawing to a close, but the next big thing may have already arrived. Reinforcement learning, like generative adversarial networks (GANs), pits neural nets against one another by having one evaluate the work of the other and distribute rewards and punishments accordinglynot unlike the way dogs and babies learn about the world.
The future of AI could be in structured learning. Just as young humans are thought to learn their first languages by processing data input from fluent caretakers with their internal language grammar, computers can also be taught how to teach themselves a taskespecially if the task is to imitate a human in some capacity.
This decade, artificial intelligence went from being employed chiefly as an academic subject or science fiction trope to an unobtrusive (though occasionally malicious) everyday companion. AIs have been around in some form since the 1500s or the 1980s, depending on your definition. The first search indexing algorithm was AltaVista in 1995, but it wasnt until 2010 that Google quietly introduced personalized search results for all customers and all searches. What was once background chatter from eager engineers has now become an inescapable part of daily life.
One function after another has been turned over to AI jurisdiction, with huge variations in efficacy and consumer response. The prevailing profit model for most of these consumer-facing applications, like social media platforms and map functions, is for users to trade their personal data for minor convenience upgrades, which are achieved through a combination of technical power, data access, and rapid worker disenfranchisement as increasingly complex service jobs are doubled up, automated away, or taken over by AI workers.
The Harvard social scientist Shoshana Zuboff explained the impact of these technologies on the economy with the term surveillance capitalism. This new economic system, she wrote, unilaterally claims human experience as free raw material for translation into behavioural data, in a bid to make profit from informed gambling based on predicted human behavior.
Were already using machine learning to make subjective decisionseven ones that have life-altering consequences. Medical applications are only some of the least controversial uses of artificial intelligence; by the end of the decade, AIs were locating stranded victims of Hurricane Maria, controlling the German power grid, and killing civilians in Pakistan.
The sheer scope of these AI-controlled decision systems is why automation has the potential to transform society on a structural level. In 2012, techno-socialist Zeynep Tufekci pointed out the presence on the Obama reelection campaign of an unprecedented number of data analysts and social scientists, bringing the traditional confluence of marketing and politics into a new age.
Intelligence that relies on data from an unjust world suffers from the principle of garbage in, garbage out, futurist Cory Doctorow observed in a recent blog post. Diverse perspectives on the design team would help, Doctorow wrote, but when it comes to certain technology, there might be no safe way to deploy:
It doesnt help that data collection for image-based AI has so far taken advantage of the most vulnerable populations first. The Facial Recognition Verification Testing Program is the industry standard for testing the accuracy of facial recognition tech; passing the program is imperative for new FR startups seeking funding.
But the datasets of human faces that the program uses are sourced, according to a report from March, from images of U.S. visa applicants, arrested people who have since died, and children exploited by child pornography. The report found that the majority of data subjects were people who had been arrested on suspicion of criminal activity. None of the millions of faces in the programs data sets belonged to people who had consented to this use of their data.
State-level efforts to regulate AI finally emerged this decade, with some success. The European Unions General Data Protection Regulation (GDPR), enforceable from 2018, limits the legal uses of valuable AI training datasets by defining the rights of the data subject (read: us); the GDPR also prohibits the black box model for machine learning applications, requiring both transparency and accountability on how data are stored and used. At the end of the decade, Google showed the class how not to regulate when they built, and then scrapped, an external AI ethics panel a week later, feigning shock at all the negative reception.
Even attempted regulation is a good sign. It means were looking at AI for what it is: not a new life form that competes for resources, but as a formidable weapon. Technological tools are most dangerous in the hands of malicious actors who already hold significant power; you can always hire more programmers. During the long campaign for the 2016 U.S. presidential election, the Putin-backed IRA Twitter botnet campaignsessentially, teams of semi-supervised bot accounts that spread disinformation on purpose and learn from real propagandainfiltrated the very mechanics of American democracy.
Keeping up with AI capacities as they grow will be a massive undertaking. Things could still get much, much worse before they get better; authoritarian governments around the world have a tendency to use technology to further consolidate power and resist regulation.
Tech capabilities have long since proved too fast for traditional human lawmakers, but one hint of what the next decade might hold comes from AIs themselves, who are beginning to be deployed as weapons against the exact type of disinformation other AIs help to create and spread. There now exists, for example, a neural net devoted explicitly to the task of identifying neural net disinformation campaigns on Twitter. The neural nets name is Grover, and its really good at this.
Continued here:
The Bot Decade: How AI Took Over Our Lives in the 2010s - Popular Mechanics
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]