The Top Five AWS Re:Invent 2019 Announcements That Impact Your Enterprise Today – Forbes
AWS CEO Andy Jassy, discusses a new initiative with the NFL that will transform player health and ... [+] safety using cloud computing during AWS re:Invent 2019 on Thursday, Dec. 5, 2019 in Las Vegas. (Isaac Brekken/AP Images for NFL)
Last week, I had the pleasure of attending Amazon.com AWSs re:Invent conference in Las Vegas. Re:Invent is AWSs once a year mega-event where it announces new services and holds 2,500 educational sessions for builders, CIOs, channel and ecosystem partners, customers, and of course, industry analysts like me. Its a large event at 65,000 attendees but could be much larger as it sells out after a few days. The attraction is simple. Its the most important cloud show you can attend and attendees want to get a head-start and hands-on with the latest and greatest of what AWS has to offer. AWS made hundreds of announcements and disclosures and while the Moor Insights & Strategy analyst team will be going deeper on the most impactful announcements, I wanted to make a top 5 list and why you should care.
1/ Graviton2 for EC2 M, R, and C 6th Gen instances
AWS Graviton2 instances
Based on an Arm N1 core, AWS says these new instances deliver up to 40% improved price/performance over comparable x86-based Skylake instances. In preview, AWS will make these available for Mainstream (M), memory-intensive (R) and compute intensive (C) instances.
Why this matters
You may expect that I gave the #1 spot to new chips because I can be a chip nerd. I can be, but when you think about a 40% improvement over IaaS, PaaS and SaaS services that cant easily be copied, Id say thats important. Thats not saying that advantage will last forever, but its very disruptive right now. First off, Id say that now no one can say Arm isnt ready for general purpose datacenter compute. It is, as AWS IaaS is larger than the #2-10 IaaS provider combined. I can see VMware and Oracle accelerating its offerings and maybe SAP doing anything with Arm, which they arent publicly. Finally, dont overthink this related to AMD and Intel. The market is massive, growing and I dont believe this is anti-Intel or AMD. But if a small AWS team can outperform AMD and Intel on some cloud workloads, you do have to do a pause. I wrote in-depth on all of this here.
2/ Many new hybrid offerings
Local Zones
While AWS doesnt want to use the term hybrid a lot, I think enterprises understand that it means they can extend their AWS experience to on-prem or close to on-prem compute and storage. AWS announced three capabilities here that are important, including going GA on Outposts and announcing Local Zones and Wavelength.
AWS describes it as, AWS Outposts are fully-managed and configurable racks of AWS-designed hardware that bring native AWS capabilities to on-premises locations using the familiar AWS or VMware control plane and tools. AWS Local Zones place select AWS services close to large population, industry, and IT centers in order to deliver applications with single-digit millisecond latencies, without requiring customers to build and operate datacenters or co-location facilities. AWS Wavelength enables developers to deploy AWS compute and storage at the edge of the 5G network, in order to support emerging applications like machine learning at the edge, industrial IoT, and virtual and augmented reality on mobile and edge devices.
Why this matters
AWS took the hybrid idea and doubled down on it. If youre a customer who wants a low latency experience on-prem with Outposts, lowest-latency in the public cloud with Local Zones, or in the core carrier network with Wavelength, AWS has you covered. When you add this to what AWS is doing with Snowball and where I think its going, its hard not for me to say AWS wont have the broadest and most diverse hybrid play. After our analyst fireside chat and Q&A with AWSs Matt Garman, Im convinced we will see tremendous compute and storage variability with all of AWSs offerings. It doesnt have all the blanks filled in, but I believe it will. This isnt for show; its for world domination.
AWS Wavelength
What Im most interested to see is how the economics and agility stack up compared to on-prem giants Dell Technologies, Hewlett Packard Enterprise, Cisco Systems, Lenovo and IBM.
3/ SageMaker Studio
SageMaker Studio
AWS says the Amazon SageMaker Studio is the first comprehensive IDE (integrated developer environment) for machine learning, allowing developers to build, train, explain, inspect, monitor, debug, and run their machine learning models from a single interface. Developers now have a simple way to manage the end-to-end machine learning development workflows so they can build, train, and deploy high-quality machine learning models faster and easier.
Why this matters
Machine learning is really hard without an army of data scientists and DL/ML-savvy developers. The problem is that these skills are very expensive, hard to attract and retain, not to mention the need to have very unique infrastructure like GPUs, FPGAs and ASICs. AWS did a lot with its base ML services to help solve the infrastructure and SageMaker to connect the building, training, and deploying ML at scale. But how do you connect the developer on an end to end workflow basis? Enter SageMaker Studio. Studio replaces many other components and toolsets that exist today for building, training, explaining, inspecting, monitoring, debugging, and running that may make those ISVs unhappy, but developers could be a lot happier.
Im very interested in lining this up against what both Google Cloud and Azure are doing and getting customer feedback. With SageMaker Studio, AWS is delivering what enterprises want; the only question is if its better than or a lot less expensive in what devs can put together themselves or run on another cloud.
4/ Inf1 EC2 instances with Inferentia
Inf1 Instances
Last year, AWS pre-announced Inferentia, its custom silicon for machine learning inference. This year, it announced the availability of instances based on that chip, called EC2 Inf1. AWS explains that With Amazon EC2 Inf1 instances, customers receive the highest performance and lowest cost for machine learning inference in the cloud. Amazon EC2 Inf1 instances deliver 2x higher inference throughput, and up to 66% lower cost-per-inference than the Amazon EC2 G4 instance family, which was already the fastest and lowest cost instance for machine learning inference available in the cloud.
Why this matters
Machine learning workloads in the cloud are split into training and inference. Enterprises train the workload with big data and monster GPUs and then run the model, or infer on smaller silicon close to the edge. Currently, the highest performance training and inference currently occurs on NVIDA GPUs, namely the V100 and G4. Most inference is done on a CPU for lower cost and latency purposes as described by Amazon retail gurus during the last two Xeon launches. While I am sure NVIDIA is hard at work on its next generation silicon, this is fascinating as nothing has served as a challenge even to NVIDIAs highest-performance instances. While I havent done a deep dive yet like Graviton 2 above, when I do, I will report back as will ML lead Karl Freund. Whatever the outcome, its good to see the level of competition rising in this space.
5/ No ML experience required services
AWS came out strong touting new services that dont require ML experience. Think of these as SaaS or high-order PaaS capabilities where you dont need a framework expert or even a data scientist. Amazon said
Why this matters
I will posit that theres more market opportunity for AWS in ML PaaS and SaaS if for nothing else the lack of data scientists and framework-savvy developers. If youre not a Fortune 100 company, youre at a distinct disadvantage to attract and retain those resources and I doubt they can be at the scale that you need them. Also, as AWS does most of its business in IaaS, theres just more opportunity in PaaS and SaaS.
AWS ML Stack
Kendra sound incredible and it will have an immense amount of competition from Azure and Google Cloud. Azure likely already has a lot of the enterprise data through Office 365, Teams and Skype and Google is good at search. CodeGuru sounds too good to be true but isnt, based on a few developer conversations I had at the show. The only thing limiting this service will be the cost, which I think is dense, given what it can save, but its human nature to not see the big picture. Fraud detector, like Kendra, will have a lot of competition, especially from IBM who have been doing this for decades. I love that the service is bringing its knowledge from its Amazon.com dealings and Id be surprised if the website has the highest fraud attacks given it does 40% of online etail transactions. Transcribe Medical is a dream come true for surgeons like my brother in-law and I hope AWS runs a truck through the aged transcription industry. AWS will have a lot of competition from both Azure and Google Cloud. A2I has been needed in the industry for a while as no state or federally regulated industry can deal with a black box.
Honorable mentions
There were so many good announcements to choose from I had to do an honorable mention list with my quick take.
Wrapping up
While its impossible to do justice to a huge event like AWS re:Invent in a single point, I also think its as important to point out the highlights with some honorable mentions. All in all, AWS answered the hybrid critics and raised the ante, introduced some homegrown silicon that de-commoditizes IaaS, and gave more reasons to use its databases and machine learning services from newbie to Ph.D.
Moor Insights & Strategy analysts will be diving more into AWS Outposts and Graviton2 (Matt Kimball), Braket (Paul Smith-Goodson), Inf1 (Karl Freund), and overall impressions (Rhett Dillingham).
More:
The Top Five AWS Re:Invent 2019 Announcements That Impact Your Enterprise Today - Forbes
- Prefix-RFT: A Unified Machine Learning Framework to blend Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT) - MarkTechPost - August 24th, 2025 [August 24th, 2025]
- What machine learning models say about Iterum Therapeutics plc - Weekly Risk Report & Fast Exit Strategy with Risk Control - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Putnam Municipal Opportunities Trust recovery - Insider Selling & Weekly Return Optimization Plans - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Viking Therapeutics Inc. recovery - Quarterly Profit Report & Fast Entry and Exit Trade Plans - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Tectonic Financial Inc. recovery - 2025 Historical Comparison & Risk Adjusted Buy and Sell Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Cowen Inc. Preferred Security - 2025 Performance Recap & Reliable Volume Spike Trade Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Milestone Pharmaceuticals Inc. recovery - July 2025 Movers & Breakout Confirmation Trade Signals - Newser - August 24th, 2025 [August 24th, 2025]
- What machine learning models say about FIGS - Weekly Trend Recap & Expert Curated Trade Setup Alerts - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Daxor Corporation - July 2025 Sentiment & Fast Exit Strategy with Risk Control - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Willis Towers Watson Public Limited Company - 2025 Macro Impact & Free Safe Capital Growth Stock Tips -... - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Sanmina Corporation - Trade Exit Summary & AI Based Buy and Sell Signals - Newser - August 24th, 2025 [August 24th, 2025]
- Combining machine learning predictions for Runway Growth Finance Corp. - Quarterly Market Summary & Expert Approved Momentum Ideas - Newser - August 24th, 2025 [August 24th, 2025]
- Can machine learning forecast Maywood Acquisition Corp. Debt Equity Composite Units recovery - Market Growth Summary & Weekly Breakout Watchlists... - August 24th, 2025 [August 24th, 2025]
- The Role of AI and Machine Learning in Personalizing Short Video Content - Vocal - August 22nd, 2025 [August 22nd, 2025]
- Optimization and predictive performance of fly ash-based sustainable concrete using integrated multitask deep learning framework with interpretable... - August 22nd, 2025 [August 22nd, 2025]
- Balancing ethics and statistics: machine learning facilitates highly accurate classification of mice according to their trait anxiety with reduced... - August 22nd, 2025 [August 22nd, 2025]
- Researchers use machine learning to predict dengue fever with 80% accuracy - Northeastern Global News - August 22nd, 2025 [August 22nd, 2025]
- Supervised machine learning algorithms for the classification of obesity levels using anthropometric indices derived from bioelectrical impedance... - August 22nd, 2025 [August 22nd, 2025]
- Machine learning aided optoelectric characterization modelling and prediction of the IV parameters of perovskite solar cells with > 90% accuracy -... - August 22nd, 2025 [August 22nd, 2025]
- Improvement of robot learning with combination of decision making and machine learning for water analysis - EurekAlert! - August 22nd, 2025 [August 22nd, 2025]
- Machine learning and SHAP values explain the association between social determinants of health and post-stroke depression - BMC Public Health - August 22nd, 2025 [August 22nd, 2025]
- Systematic selection of best performing mathematical models for in vitro gas production using machine learning across diverse feeds - Nature - August 22nd, 2025 [August 22nd, 2025]
- YouTubes Using Machine Learning to Improve the Look of Your Shorts Clips - Social Media Today - August 20th, 2025 [August 20th, 2025]
- Machine learning based on pangenome-wide association studies reveals the impact of host source on the zoonotic potential of closely related bacterial... - August 20th, 2025 [August 20th, 2025]
- Machine learning model for early diagnosis of breast cancer based on PiRNA expression with CA153 - Nature - August 20th, 2025 [August 20th, 2025]
- Automatic detection of cognitive events using machine learning and understanding models interpretations of human cognition - Nature - August 20th, 2025 [August 20th, 2025]
- Damon Evolves I/O Platform with Advanced Machine Learning for Adaptive Rider Performance - Motor Sports Newswire - August 20th, 2025 [August 20th, 2025]
- Predictive modeling of asthma drug properties using machine learning and topological indices in a MATLAB based QSPR study - Nature - August 20th, 2025 [August 20th, 2025]
- Saturday Citations: A new category of supernovas; neurons beat machine learning; depression and vitiligo - Phys.org - August 18th, 2025 [August 18th, 2025]
- Agentic AI Is The New Vaporware - Machine Learning Week 2025 - August 18th, 2025 [August 18th, 2025]
- ReactorNet based on machine learning framework to identify control rod position for real time monitoring in PWRs - Nature - August 18th, 2025 [August 18th, 2025]
- Low-cost fabrication and comparative evaluation of machine learning algorithms for flexible PDMS-based hexagonal patch antenna - Nature - August 18th, 2025 [August 18th, 2025]
- Digital biomarkers for interstitial glucose prediction in healthy individuals using wearables and machine learning - Nature - August 18th, 2025 [August 18th, 2025]
- Integrative machine learning models predict prostate cancer diagnosis and biochemical recurrence risk: Advancing precision oncology - Nature - August 18th, 2025 [August 18th, 2025]
- Predicting onset of myopic refractive error in children using machine learning on routine pediatric eye examinations only - Nature - August 18th, 2025 [August 18th, 2025]
- Advanced machine learning framework for thyroid cancer epidemiology in Iran through integration of environmental socioeconomic and health system... - August 18th, 2025 [August 18th, 2025]
- Year-round daily wildfire prediction and key factor analysis using machine learning: a case study of Gangwon State, South Korea - Nature - August 18th, 2025 [August 18th, 2025]
- Comparing the effect of pre-anesthesia clonidine and tranexamic acid on intraoperative bleeding volume in rhinoplasty: a machine learning approach -... - August 18th, 2025 [August 18th, 2025]
- Exploring the role of lipid metabolism related genes and immune microenvironment in periodontitis by integrating machine learning and bioinformatics... - August 18th, 2025 [August 18th, 2025]
- From Data to Delivery: Leveraging AI and Machine Learning in Network Planning - Tech Times - August 18th, 2025 [August 18th, 2025]
- Association between the nutritional inflammation index and mortality among patients with sepsis: insights from traditional methods and machine... - August 18th, 2025 [August 18th, 2025]
- C3 AI Selected for Constellation ShortList for Artificial Intelligence and Machine Learning Best-of-Breed Platforms for Q3 2025 - Yahoo Finance - August 14th, 2025 [August 14th, 2025]
- A physicist tackles machine learning black box - The University of Utah - August 14th, 2025 [August 14th, 2025]
- Morgan State University Collaborates with Amazon-Machine Learning University to Bring AI and Machine Learning Education to the Classroom - Morgan... - August 14th, 2025 [August 14th, 2025]
- BEAST-GB model combines machine learning and behavioral science to predict people's decisions - Tech Xplore - August 14th, 2025 [August 14th, 2025]
- Balancing Regulation and Risk of AI and Machine Learning Software in Medical Devices - Infection Control Today - August 14th, 2025 [August 14th, 2025]
- A deep learning model with machine vision system for recognizing type of the food during the food consumption - Nature - August 14th, 2025 [August 14th, 2025]
- Machine learning reveals the mysteries of amorphous alumina thin films at atomic scale - Phys.org - August 14th, 2025 [August 14th, 2025]
- Correction: Machine learning based prediction of cognitive metrics using major biomarkers in SuperAgers - Nature - August 14th, 2025 [August 14th, 2025]
- Transforming Cancer Biomarker Discovery with Machine Learning - the-scientist.com - August 14th, 2025 [August 14th, 2025]
- AI in Precision Agriculture Market Accelerates Adoption of Predictive Analytics and Machine Learning - openPR.com - August 14th, 2025 [August 14th, 2025]
- Improvements from incorporating machine learning algorithms into near real-time operational post-processing - Nature - August 14th, 2025 [August 14th, 2025]
- Data Quality Tools Market Expected to Surge to USD 8.0 Billion by 2033, Driven by AI and Machine Learning Adoption - Vocal - August 12th, 2025 [August 12th, 2025]
- Predicting female football outcomes by machine learning: behavioural analysis of goals as high stress events - Nature - August 12th, 2025 [August 12th, 2025]
- Harnessing Machine Learning and Weak AI to do Smart Things on the Production Floor - AdvancedManufacturing.org - August 12th, 2025 [August 12th, 2025]
- The Role of AI in Predicting Customer Churn Beyond Traditional Metrics - Machine Learning Week 2025 - August 12th, 2025 [August 12th, 2025]
- Towards better earthquake risk assessment with machine learning and geological survey data - Tech Xplore - August 12th, 2025 [August 12th, 2025]
- AI and Machine Learning - Philadelphia calls for climate resilience partners - Smart Cities World - August 12th, 2025 [August 12th, 2025]
- Exploring the Potential of Machine Learning in Optimizing Respiratory Failure Treatment - AJMC - August 9th, 2025 [August 9th, 2025]
- Decoding macrophage immune responses with gene editing and machine learning - News-Medical - August 9th, 2025 [August 9th, 2025]
- Application of causal forest double machine learning (DML) approach to assess tuberculosis preventive therapys impact on ART adherence - Nature - August 9th, 2025 [August 9th, 2025]
- Serum peptide biomarkers by MALDI-TOF MS coupled with machine learning for diagnosis and classification of hepato-pancreato-biliary cancers - Nature - August 9th, 2025 [August 9th, 2025]
- Machine learning based analysis of leucocyte cell population data by Sysmex XN series hematology analyzer for the diagnosis of bacteremia - Nature - August 9th, 2025 [August 9th, 2025]
- Predicting COVID-19 severity in pediatric patients using machine learning: a comparative analysis of algorithms and ensemble methods - Nature - August 9th, 2025 [August 9th, 2025]
- Impact of massive open online courses in higher education using machine learning and decision based fuzzy frank power aggregation operators models -... - August 9th, 2025 [August 9th, 2025]
- Machine learning improves earthquake risk assessment and foundation planning - Open Access Government - August 9th, 2025 [August 9th, 2025]
- How machine learning can tell who with schizophrenia will respond to treatment. - Psychology Today - August 7th, 2025 [August 7th, 2025]
- City Colleges of Chicago and Amazon-MLU bring enhanced Artificial Intelligence and Machine Learning to the colleges faculty - colleges.ccc.edu - August 7th, 2025 [August 7th, 2025]
- Machine learning derived development and validation of extracellular matrix related signature for predicting prognosis in adolescents and young adults... - August 7th, 2025 [August 7th, 2025]
- Alzheimers disease risk prediction using machine learning for survival analysis with a comorbidity-based approach - Nature - August 7th, 2025 [August 7th, 2025]
- Machine learning models highlight environmental and genetic factors associated with the Arabidopsis circadian clock - Nature - August 7th, 2025 [August 7th, 2025]
- AI-derived CT biomarker score for robust COVID-19 mortality prediction across multiple waves and regions using machine learning - Nature - August 7th, 2025 [August 7th, 2025]
- Alcorn State partners with AWS-Machine Learning University to integrate AI in classrooms - WJTV - August 7th, 2025 [August 7th, 2025]
- Why Machine Learning is the Next Big Thing in Diabetes Care and CGM - AZoRobotics - August 7th, 2025 [August 7th, 2025]
- D-Wave launches open-source quantum AI toolkit to accelerate machine learning innovation - Mugglehead Magazine - August 7th, 2025 [August 7th, 2025]
- Machine learning algorithms to predict the risk of admission to intensive care units in HIV-infected individuals: a single-centre study - Virology... - August 6th, 2025 [August 6th, 2025]
- Novel machine learning algorithm could boost detection of familial hypercholesterolemia - Healio - August 6th, 2025 [August 6th, 2025]
- Introducing the Signal and Image Processing and Machine Learning (SIPML) Certificate - University of Michigan - August 6th, 2025 [August 6th, 2025]
- AI to Predict Suicide: The Case for Interpretable Machine Learning - Think Global Health - August 6th, 2025 [August 6th, 2025]
- Machine learning based optimization of titanium electropolishing using artificial neural networks and Taguchi design in eco-friendly electrolytes -... - August 6th, 2025 [August 6th, 2025]