Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540544 (2014).
ADS CAS PubMed Article Google Scholar
Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 10621066 (2017).
ADS CAS PubMed Article Google Scholar
Li, P. et al. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion. Adv. Mater. 27, 45854591 (2015).
CAS PubMed Article Google Scholar
Kumar, R. & Rosen, M. A. Thermal performance of integrated collector storage solar water heater with corrugated absorber surface. Appl. Therm. Eng. 30, 17641768 (2010).
Article Google Scholar
Planck, M. The Theory of Heat Radiation (P. Blakinstons Son & Co., 1914).
MATH Google Scholar
Zhu, J., Hsu, C. M., Yu, Z., Fan, S. & Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 19791984 (2010).
ADS CAS PubMed Article Google Scholar
Zhou, L., Yu, X. & Zhu, J. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement. Nano Lett. 14, 10931098 (2014).
ADS CAS PubMed Article Google Scholar
Lee, B. J., Chen, Y. B., Han, S., Chiu, F. C. & Lee, H. J. Wavelength-selective solar thermal absorber with two-dimensional nickel gratings. J. Heat Transfer 136, 17 (2014).
Google Scholar
Yin, X., Yang, R., Tan, G. & Fan, S. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 370, 786791 (2020).
ADS CAS PubMed Article Google Scholar
Nie, X. et al. Cool white polymer coatings based on glass bubbles for buildings. Sci. Rep. 10, 110 (2020).
ADS Article CAS Google Scholar
Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315319 (2018).
ADS CAS PubMed Article Google Scholar
Zhang, H. et al. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. 117, 202001802 (2020).
Google Scholar
Krishna, A. et al. Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 19, 50865092 (2019).
ADS CAS PubMed Article Google Scholar
Sala-Casanovas, M., Krishna, A., Yu, Z. & Lee, J. Bio-inspired stretchable selective emitters based on corrugated nickel for personal thermal management. Nanoscale Microscale Thermophys. Eng. 23, 173187 (2019).
ADS CAS Article Google Scholar
Sullivan, J., Yu, Z. & Lee, J. Optical analysis and optimization of micropyramid texture for thermal radiation control. Nanoscale Microscale Thermophys. Eng. https://doi.org/10.1080/15567265.2021.1958960 (2021).
Article Google Scholar
Campbell, P. & Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243249 (1987).
ADS Article Google Scholar
Leon, J. J. D., Hiszpanski, A. M., Bond, T. C. & Kuntz, J. D. Design rules for tailoring antireflection properties of hierarchical optical structures. Adv. Opt. Mater. 5, 18 (2017).
Google Scholar
Zhang, T. et al. Black silicon with self-cleaning surface prepared by wetting processes. Nanoscale Res. Lett. 8, 15 (2013).
ADS CAS Article Google Scholar
Liu, Y. et al. Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells. Nano Energy 3, 127133 (2014).
CAS Article Google Scholar
Dimitrov, D. Z. & Du, C. H. Crystalline silicon solar cells with micro/nano texture. Appl. Surf. Sci. 266, 14 (2013).
ADS CAS Article Google Scholar
Peter Amalathas, A. & Alkaisi, M. M. Efficient light trapping nanopyramid structures for solar cells patterned using UV nanoimprint lithography. Mater. Sci. Semicond. Process. 57, 5458 (2017).
Article CAS Google Scholar
Mavrokefalos, A., Han, S. E., Yerci, S., Branham, M. S. & Chen, G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 27922796 (2012).
ADS CAS PubMed Article Google Scholar
Rahman, T., Navarro-Ca, M. & Fobelets, K. High density micro-pyramids with silicon nanowire array for photovoltaic applications. Nanotechnology 25, 485202 (2014).
PubMed Article CAS Google Scholar
Singh, P. et al. Fabrication of vertical silicon nanowire arrays on three-dimensional micro-pyramid-based silicon substrate. J. Mater. Sci. 50, 66316641 (2015).
ADS CAS Article Google Scholar
Zhu, J. et al. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279282 (2009).
ADS PubMed Article CAS Google Scholar
Wei, W. R. et al. Above-11%-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano Lett. 13, 36583663 (2013).
ADS CAS PubMed Article Google Scholar
Peng, Y. J., Huang, H. X. & Xie, H. Rapid fabrication of antireflective pyramid structure on polystyrene film used as protective layer of solar cell. Sol. Energy Mater. Sol. Cells 171, 98105 (2017).
CAS Article Google Scholar
Sai, H., Yugami, H., Kanamori, Y. & Hane, K. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Sol. Energy Mater. Sol. Cells 79, 3549 (2003).
CAS Article Google Scholar
Deinega, A., Valuev, I., Potapkin, B. & Lozovik, Y. Minimizing light reflection from dielectric textured surfaces. J. Opt. Soc. Am. A 28, 770 (2011).
ADS Article Google Scholar
Shore, K. A. Numerical methods in photonics, by Andrei V. Lavrinenko, Jesper Laegsgaard, Niles Gregersen, Frank Schmidt, and Thomas Sondergaard. Contemporary Physics vol. 57 (2016).
Malkiel, I. et al. Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl. 7, 18 (2018).
CAS Article Google Scholar
Bojarski, M. et al. End to End Learning for Self-Driving Cars. 19 (2016).
Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29, 1617 (2012).
Article Google Scholar
Spantideas, S. T., Giannopoulos, A. E., Kapsalis, N. C. & Capsalis, C. N. A deep learning method for modeling the magnetic signature of spacecraft equipment using multiple magnetic dipoles. IEEE Magn. Lett. 12, 15 (2021).
Article Google Scholar
Xiong, Y., Guo, L., Tian, D., Zhang, Y. & Liu, C. Intelligent optimization strategy based on statistical machine learning for spacecraft thermal design. IEEE Access 8, 204268204282 (2020).
Article Google Scholar
Zhang, C. A Statistical Machine Learning Based Modeling and Exploration Framework for Run-Time Cross-Stack Energy Optimization (University of North Carolina at Charlotte, 2013).
Book Google Scholar
Zhu, W. et al. Optimization of the thermophysical properties of the thermal barrier coating materials based on GA-SVR machine learning method: Illustrated with ZrO2doped DyTaO4system. Mater. Res. Express 8, 125503 (2021).
ADS CAS Article Google Scholar
Zhang, T. et al. Machine learning and evolutionary algorithm studies of graphene metamaterials for optimized plasmon-induced transparency. Opt. Express 28, 18899 (2020).
ADS CAS PubMed Article Google Scholar
Li, X., Shu, J., Gu, W. & Gao, L. Deep neural network for plasmonic sensor modeling. Opt. Mater. Express 9, 3857 (2019).
ADS CAS Article Google Scholar
Baxter, J. et al. Plasmonic colours predicted by deep learning. Sci. Rep. 9, 119 (2019).
ADS Article CAS Google Scholar
He, J., He, C., Zheng, C., Wang, Q. & Ye, J. Plasmonic nanoparticle simulations and inverse design using machine learning. Nanoscale 11, 1744417459 (2019).
CAS PubMed Article Google Scholar
Sajedian, I., Kim, J. & Rho, J. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks. Microsyst. Nanoeng. 5, 18 (2019).
Article Google Scholar
Han, S., Shin, J. H., Jung, P. H., Lee, H. & Lee, B. J. Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Adv. Opt. Mater. 4, 12651273 (2016).
CAS Article Google Scholar
Seo, J. et al. Design of a broadband solar thermal absorber using a deep neural network and experimental demonstration of its performance. Sci. Rep. 9, 19 (2019).
ADS Article CAS Google Scholar
Nadell, C. C., Huang, B., Malof, J. M. & Padilla, W. J. Deep learning for accelerated all-dielectric metasurface design. Opt. Express 27, 27523 (2019).
ADS CAS PubMed Article Google Scholar
Deppe, T. & Munday, J. Nighttime photovoltaic cells: Electrical power generation by optically coupling with deep space. ACS Photon. https://doi.org/10.1021/acsphotonics.9b00679 (2019).
Article Google Scholar
Ma, W., Cheng, F. & Liu, Y. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 63266334 (2018).
CAS PubMed Article Google Scholar
Li, Y. et al. Self-learning perfect optical chirality via a deep neural network. Phys. Rev. Lett. 123, 16 (2019).
CAS Google Scholar
Balin, I., Garmider, V., Long, Y. & Abdulhalim, I. Training artificial neural network for optimization of nanostructured VO2-based smart window performance. Opt. Express 27, A1030 (2019).
ADS CAS PubMed Article Google Scholar
Elzouka, M., Yang, C., Albert, A., Prasher, R. S. & Lubner, S. D. Interpretable forward and inverse design of particle spectral emissivity using common machine-learning models. Cell Rep. Phys. Sci. 1, 100259 (2020).
Article Google Scholar
Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks. arXiv 18 (2017). https://doi.org/10.1117/12.2289195.
An, S. et al. A Deep learning approach for objective-driven all-dielectric metasurface design. ACS Photon. 6, 31963207 (2019).
See the rest here:
Deep learning based analysis of microstructured materials for thermal radiation control | Scientific Reports - Nature.com