Artificial Intelligence, Critical Systems, and the Control Problem – HS Today – HSToday
Artificial Intelligence (AI) is transforming our way of life from new forms of social organization and scientific discovery to defense and intelligence. This explosive progress is especially apparent in the subfield of machine learning (ML), where AI systems learn autonomously by identifying patterns in large volumes of data.[1] Indeed, over the last five years, the fields of AI and ML have witnessed stunning advancements in computer vision (e.g., object recognition), speech recognition, and scientific discovery.[2], [3], [4], [5] However, these advances are not without risk as transformative technologies are generally accompanied by a significant risk profile, with notable examples including the discovery of nuclear energy, the Internet, and synthetic biology. Experts are increasingly voicing concerns over AI risk from misuse by state and non-state actors, principally in the areas of cybersecurity and disinformation propagation. However, issues of control for example, how advanced AI decision-making aligns with human goals are not as prominent in the discussion of risk and could ultimately be equally or more dangerous than threats from nefarious actors. Modern ML systems are not programmed (as programming is typically understood), but rather independently developed strategies to complete objectives, which can be mis-specified, learned incorrectly, or executed in unexpected ways. This issue becomes more pronounced as AI becomes more ubiquitous and we become more reliant on AI decision-making. Thus, as AI is increasingly entwined through tightly coupled critical systems, the focus must expand beyond accidents and misuse to the autonomous decision processes themselves.
The principal mid- to long-term risks from AI systems fall into three broad categories: risks of misuse or accidents, structural risks, and misaligned objectives. The misuse or accident category includes things such as AI-enabled cyber-attacks with increased speed and effectiveness or the generation and distribution of disinformation at scale.[6] In critical infrastructures, AI accidents could manifest as system failures with potential secondary and tertiary effects across connected networks. A contemporary example of an AI accident is the New York Stock Exchange (NYSE) Flash Crash of 2010, which drove the market down 600 points in 5 minutes.[7] Such rapid and unexpected operations from algorithmic trading platforms will only increase in destructive potential as systems increase in complexity, interconnectedness, and autonomy.
The structural risks category is concerned with how AI technologies shape the social and geopolitical environment in which they are deployed. Important contemporary examples include the impact of social media content selection algorithms on political polarization or uncertainty in nuclear deterrence and the offense-to-defense balance.[8],[9] For example, the integration of AI into critical systems, including peripheral processes (e.g., command and control, targeting, supply chain, and logistics), can degrade multilateral trust in deterrence.[10] Indeed, increasing autonomy in all links of the national defense chain, from decision support to offensive weapons deployment, compounds the uncertainty already under discussion with autonomous weapons.[11]
Misaligned objectives is another important failure mode. Since ML systems develop independent strategies, a concern is that the AI systems will misinterpret the correct objectives, develop destructive subgoals, or complete them in an unpredictable way. While typically grouped together, it is important to clarify the differences between a system crash and actions executed by a misaligned AI system so that appropriate risk mitigation measures can be evaluated. Understanding the range of potential failures may help in the allocation of resources for research on system robustness, interpretability, or AI alignment.
At its most basic level, AI alignment involves teaching AI systems to accurately capture what we want and complete it in a safe and ethical manner. Misalignment of AI systems poses the highest downside risk of catastrophic failures. While system failures by themselves could be immensely damaging, alignment failures could include unexpected and surprising actions outside the systems intent or window of probability. However, ensuring the safe and accurate interpretation of human objectives is deceptively complex in AI systems. On the surface, this seems straightforward, but the problem is far from obvious with unimaginably complex subtleties that could lead to dangerous consequences.
In contrast with nuclear weapons or cyber threats, where the risks are more obvious, risks from AI misalignment can be less clear. These complexities have led to misinterpretation and confusion with some attributing the concerns to disobedient or malicious AI systems.[12] However, the concerns are not that AI will defy its programming but rather that it will follow the programming exactly and develop novel, unanticipated solutions. In effect, the AI will pursue the objective accurately but may yield an unintended, even harmful, consequence. Googles Alpha Go program, which defeated the world champion Go[13] player in 2016, provides an illustrative example of the potential for unexpected solutions. Trained on millions of games, Alpha Gos neural network learned completely unexpected actions outside of the human frame of reference.[14] As Chris Anderson explains, what took the human brain thousands of years to optimize Googles Alpha Go completed in three years, executing better, almost alien solutions that we hadnt even considered.[15] This novelty illustrates how unpredictable AI systems can be when permitted to develop their own strategies to accomplish a defined objective.
To appreciate how AI systems pose these risks, by default, it is important to understand how and why AI systems pursue objectives. As described, ML is designed not to program distinct instructions but to allow the AI to determine the most efficient means. As learning progresses, the training parameters are adjusted to minimize the difference between the pursued objective and the actual value by incentivizing positive behavior (known as reinforcement learning, or RL).[16],[17] Just as humans pursue positive reinforcement, AI agents are goal-directed entities, designed to pursue objectives, whether the goal aligns with the original intent or not.
Computer science professor Steve Omohundro illustrates a series of innate AI drives that systems will pursue unless explicitly counteracted.[18] According to Omohundro, distinct from programming, AI agents will strive to self-improve, seek to acquire resources, and be self-protective.[19] These innate drives were recently demonstrated experimentally, where AI agents tend to seek power over the environment to achieve objectives most efficiently.[20] Thus, AI agents are naturally incentivized to seek out useful resources to accomplish an objective. This power-seeking behavior was reported by Open AI, where two teams of agents, instructed to play hide-and-seek in a simulated environment, proceeded to horde objects from the competition in what Open AI described as tool use distinct from the actual objective.[21] The AI teams learned that the objects were instrumental in completing the objective.[22] Thus, a significant concern for AI researchers is the undefined instrumental sub-goals that are pursued to complete the final objective. This tendency to instantiate sub-goals is coined the instrumental convergence thesis by Oxford philosopher Nick Bostrom. Bostrom postulated that intermediate sub-goals are likely to be pursued by an intelligent agent to complete the final objective more efficiently.[23] Consider an advanced AI system optimized to ensure adequate power between several cities. The agent could develop a sub-goal of capturing and redirecting bulk power from other locations to ensure power grid stability. Another example is an autonomous weapons system designed to identify targets that develop a unique set of intermediate indicators to determine the identity and location of the enemy. Instrumental sub-goals could be as simple as locking a computer-controlled access door or breaking traffic laws in an autonomous car, or as severe as destabilizing a regional power grid or nuclear power control system. These hypothetical and novel AI decision processes raise troubling questions in the context of conflict or safety of critical systems. The range of possible AI solutions are too large to consider and can only get more consequential as systems become more capable and complex. The effect of AI misalignment could be disastrous if the AI discovers an unanticipated optimal solution to a problem that results in a critical system becoming inoperable or yielding a catastrophic result.
While the control problem is troubling by itself, the integration of multiagent systems could be far more dangerous and could lead to other (as of now unanticipated) failure modes between systems. Just like complex societies, complex agent communities could manifest new capabilities and emergent failure modes unique to the complex system. Indeed, AI failures are unlikely to happen in isolation and the roadmap for multiagent AI environments is currently underway in both the public and private sectors.
Several U.S. government initiatives for next-generation intelligent networks include adaptive learning agents for autonomous processes. The Armys Joint All-Domain Command and Control (JADC2) concept for networked operations and the Resilient and Intelligent Next-Generation Systems (RINGS) program, put forth by the National Institute of Standards and Technology (NIST), are two notable ongoing initiatives.[24], [25] Literature on cognitive Internet of Things (IoT) points to the extent of autonomy planned for self-configuring, adaptive AI communities and societies to steer networks through managing user intent, supervision of autonomy, and control.[26] A recent report from the worlds largest technical professional organization, IEEE, outlines the benefits of deep reinforcement learning (RL) agents for cyber security, proposing that, since RL agents are highly capable of solving complex, dynamic, and especially high-dimensional problems, they are optimal for cyber defense.[27] Researchers propose that RL agents be designed and released autonomously to configure the network, prevent cyber exploits, detect and counter jamming attacks, and offensively target distributed denial-of-service attacks.[28] Other researchers submitted proposals for automated penetration-testing, the ability to self-replicate the RL agents, while others propose cyber-red teaming autonomous agents for cyber-defense.[29], [30], [31]
Considering the host of problems discussed from AI alignment, unexpected side effects, and the issue of control, jumping headfirst into efforts that give AI meaningful control over critical systems (such as the examples described above) without careful consideration of the potential unexpected (or potentially catastrophic) outcomes does not appear to be the appropriate course of action. Proposing the use of one autonomous system in warfare is concerning but releasing millions into critical networks is another matter entirely. Researcher David Manheim explains that multiagent systems are vulnerable to entirely novel risks, such as over-optimization failures, where optimization pressure allows individual agents to circumvent designed limits.[32] As Manheim describes, In many-agent systems, even relatively simple systems can become complex adaptive systems due to agent behavior.[33] At the same time, research demonstrates that multiagent environments lead to greater agent generalization, thus reducing the capability gap that separates human intelligence from machine intelligence.[34] In contrast, some authors present multiagent systems as a viable solution to the control problem, with stable, bounded capabilities, and others note the broad uncertainty and potential for self-adaptation and mutation.[35] Yet, the author admits that there are risks and the multiplicative growth of RL agents could potentially lead to unexpected failures, with the potential for the manifestation of malignant agential behaviors.[36],[37] AI researcher Trent McConaughy highlights the risk from adaptive AI systems, specifically decentralized autonomous organizations (DAO) in blockchain networks. McConaughy suggests that rather than a powerful AI system taking control of resources, as is typically discussed, the situation may be far more subtle where we could simply hand over global resources to self-replicating communities of adaptive AI systems (e.g., Bitcoins increasing energy expenditures that show no sign of slowing).[38]
Advanced AI capabilities in next-generation networks that dynamically reconfigure and reorganize network operations hold undeniable risks to security and stability.[39],[40] A complex landscape of AI agents, designed to autonomously protect critical networks or conduct offensive operations, would invariably need to develop subgoals to manage the diversity of objectives. Thus, whether individual systems or autonomous collectives, the web of potential failures and subtle side-effects could unleash unpredictable dangers leading to catastrophic second- and third-order effects. As AI systems are currently designed, understanding the impact of the subgoals (or even their existence) could be extremely difficult or impossible. The AI examples above illustrate critical infrastructure and national security cases that are currently in discussion, but the reality could be far more complex, unexpected, and dangerous. While most AI researchers expect that safety will develop concurrently with system autonomy and complexity, there is no certainty in this proposition. Indeed, if there is even a minute chance of misalignment in a deployed AI system (or systems) in critical infrastructure or national defense it is important that researchers dedicate a portion of resources to evaluating the risks. Decision makers in government and industry must consider these risks and potential means to mitigate them before generalized AI systems are integrated into critical and national security infrastructure, because to do otherwise could lead to catastrophic failure modes that we may not be able to fully anticipate, endure, or overcome.
Disclaimer: The authors are responsible for the content of this article. The views expressed do not reflect the official policy or position of the National Intelligence University, the National Geospatial Intelligence Agency, the Department of Defense, the Office of the Director of National Intelligence, the U.S. Intelligence Community, or the U.S. Government.
Anderson, Chris. Life. In Possible Minds: Twenty-Five Ways of Looking at AI, by John Brockman, 150. New York: Penguin Books, 2019.
Avatrade Staff. The Flash Crash of 2010. Avatrade. August 26, 2021. https://www.avatrade.com/blog/trading-history/the-flash-crash-of-2010 (accessed August 24, 2022).
Baker, Bowen, et al. Emergent Tool Use From Multi-Agent Autocurricula. arXiv:1909.07528v2, 2020.
Berggren, Viktor, et al. Artificial intelligence in next-generation connected systems. Ericsson. September 2021. https://www.ericsson.com/en/reports-and-papers/white-papers/artificial-intelligence-in-next-generation-connected-systems (accessed May 3, 2022).
Bostrom, Nick. The Superintelligent Will: Motivation and Instrumental Rationality in Advanced Artificial Agents. Minds and Machines 22, no. 2 (2012): 71-85.
Brown, Tom B., et al. Language Models are Few-Shot Learners. arXiv:2005.14165, 2020.
Buchanan, Ben, John Bansemer, Dakota Cary, Jack Lucas, and Micah Musser. Georgetown University Center for Security and Emerging Technology. Automating Cyber Attacks: Hype and Reality. November 2020. https://cset.georgetown.edu/publication/automating-cyber-attacks/.
Byford, Sam. AlphaGos battle with Lee Se-dol is something Ill never forget. The Verge. March 15, 2016. https://www.theverge.com/2016/3/15/11234816/alphago-vs-lee-sedol-go-game-recap (accessed August 19, 2022).
Drexler, K Eric. Reframing Superintelligence: Comprehensive AI Services as General Intelligence. Future of Humanity Institute. 2019. https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf (accessed August 19, 2022).
Duettmann, Allison. WELCOME NEW PLAYERS | Gaming the Future. Foresight Institute. February 14, 2022. https://foresightinstitute.substack.com/p/new-players?s=r (accessed August 19, 2022).
Edison, Bill. Creating an AI red team to protect critical infrastructure. MITRE Corporation. September 2019. https://www.mitre.org/publications/project-stories/creating-an-ai-red-team-to-protect-critical-infrastructure (accessed August 19, 2022).
Etzioni, Oren. No, the Experts Dont Think Superintelligent AI is a Threat to Humanity. MIT Technology Review. September 20, 2016. https://www.technologyreview.com/2016/09/20/70131/no-the-experts-dont-think-superintelligent-ai-is-a-threat-to-humanity/ (accessed August 19, 2022).
Gary, Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of DALL-E 2. arXiv:2204.13807, 2022.
GCN Staff. NSF, NIST, DOD team up on resilient next-gen networking. GCN. April 30, 2021. https://gcn.com/cybersecurity/2021/04/nsf-nist-dod-team-up-on-resilient-next-gen-networking/315337/ (accessed May 1, 2022).
Jumper, John, et al. Highly accurate protein structure prediction with AlphaFold. Nature 596 (August 2021): 583589.
Kallenborn, Zachary. Swords and Shields: Autonomy, AI, and the Offense-Defense Balance. Georgetown Journal of International Affairs. November 22, 2021. https://gjia.georgetown.edu/2021/11/22/swords-and-shields-autonomy-ai-and-the-offense-defense-balance/ (accessed August 19, 2022).
Kegel, Helene. Understanding Gradient Descent in Machine Learning. Medium. November 17, 2021. https://medium.com/mlearning-ai/understanding-gradient-descent-in-machine-learning-f48c211c391a (accessed August 19, 2022).
Krakovna, Victoria. Specification gaming: the flip side of AI ingenuity. Medium. April 11, 2020. https://deepmindsafetyresearch.medium.com/specification-gaming-the-flip-side-of-ai-ingenuity-c85bdb0deeb4 (accessed August 19, 2022).
Littman, Michael L, et al. Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) Study Panel Report. Stanford University. September 2021. http://ai100.stanford.edu/2021-report (accessed August 19, 2022).
Manheim, David. Overoptimization Failures and Specification Gaming in Multi-agent Systems. Deep AI. October 16, 2018. https://deepai.org/publication/overoptimization-failures-and-specification-gaming-in-multi-agent-systems (accessed August 19, 2022).
Nguyen, Thanh Thi, and Vijay Janapa Reddi. Deep Reinforcement Learning for Cyber Security. IEEE Transactions on Neural Networks and Learning Systems. IEEE, 2021. 1-17.
Omohundro, Stephen M. The Basic AI Drives. Proceedings of the 2008 conference on Artificial General Intelligence 2008: Proceedings of the First AGI Conference. Amsterdam: IOS Press, 2008. 483492.
Panfili, Martina, Alessandro Giuseppi, Andrea Fiaschetti, Homoud B. Al-Jibreen, Antonio Pietrabissa, and Franchisco Delli Priscoli. A Game-Theoretical Approach to Cyber-Security of Critical Infrastructures Based on Multi-Agent Reinforcement Learning. 2018 26th Mediterranean Conference on Control and Automation (MED). IEEE, 2018. 460-465.
Pico-Valencia, Pablo, and Juan A Holgado-Terriza. Agentification of the Internet of Things: A Systematic Literature Review. International Journal of Distributed Sensor Networks 14, no. 10 (2018).
Pomerleu, Mark. US Army network modernization sets the stage for JADC2. C4ISRNet. February 9, 2022. https://www.c4isrnet.com/it-networks/2022/02/09/us-army-network-modernization-sets-the-stage-for-jadc2/ (accessed August 19, 2022).
Russell, Stewart. Human Compatible: Artificial Intelligence and the Problem of Control. New York: Viking, 2019.
Shah, Rohin. Reframing Superintelligence: Comprehensive AI Services as General Intelligence. AI Alignment Forum. January 8, 2019. https://www.alignmentforum.org/posts/x3fNwSe5aWZb5yXEG/reframing-superintelligence-comprehensive-ai-services-as (accessed August 19, 2022).
Shahar, Avin, and SM Amadae. Autonomy and machine learning at the interface of nuclear weapons, computers and people. In The Impact of Artificial Intelligence on Strategic Stability and Nuclear Risk, by Vincent Boulanin, 105-118. Stockholm: Stockholm International Peace Research Institute, 2019.
Trevino, Marty. Cyber Physical Systems: The Coming Singularity. Prism 8, no. 3 (2019): 4.
Turner, Alexander Matt, Logan Smith, Rohin Shah, Andrew Critch, and Prasad Tadepalli. Optimal Policies Tend to Seek Power. arXiv:1912.01683, 2021: 8-9.
Winder, Phil. Automating Cyber-Security With Reinforcement Learning. Winder.AI. n.d. https://winder.ai/automating-cyber-security-with-reinforcement-learning/ (accessed August 19, 2022).
Zeng, Andy, et al. Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language. arXiv:2204.00598 (arXiv), April 2022.
Zewe, Adam. Does this artificial intelligence think like a human? April 6, 2022. https://news.mit.edu/2022/does-this-artificial-intelligence-think-human-0406 (accessed August 19, 2022).
Zwetsloot, Remco, and Allan Dafoe. Lawfare. Thinking About Risks From AI: Accidents, Misuse and Structure. February 11, 2019. https://www.lawfareblog.com/thinking-about-risks-ai-accidents-misuse-and-structure (accessed August 19, 2022).
[1] (Zewe 2022)
[2] (Littman, et al. 2021)
[3] (Jumper, et al. 2021)
[4] (Brown, et al. 2020)
[5] (Gary, Davis and Aaronson 2022)
[6] (Buchanan, et al. 2020)
[7] (Avatrade Staff 2021)
[8] (Russell 2019, 9-10)
[9] (Zwetsloot and Dafoe 2019)
[12] (Etzioni 2016)
[13] GO is an ancient Chinese strategy board game
[14] (Byford 2016)
[15] (Anderson 2019, 150)
[16] (Kegel 2021)
[17] (Krakovna 2020)
[18] (Omohundro 2008, 483-492)
[19] Ibid., 484.
[20] (Turner, et al. 2021, 8-9)
[21] (Baker, et al. 2020)
[22] Ibid.
[23] (Bostrom 2012, 71-85)
[24] (GCN Staff 2021)
[25] (Pomerleu 2022)
[26] (Berggren, et al. 2021)
[27] (Nguyen and Reddi 2021)
[28] Ibid.
[29] (Edison 2019)
[30] (Panfili, et al. 2018)
[31] (Winder n.d.)
[32] (Manheim 2018)
[33] Ibid.
[34] (Zeng, et al. 2022)
[35] (Drexler 2019, 18)
[36] Ibid.
[37] (Shah 2019)
[38] (Duettmann 2022)
[39] (Trevino 2019)
[40] (Pico-Valencia and Holgado-Terriza 2018)
See the article here:
Artificial Intelligence, Critical Systems, and the Control Problem - HS Today - HSToday
- Modeling visual perception of Chinese classical private gardens with image parsing and interpretable machine learning - Nature - February 16th, 2026 [February 16th, 2026]
- Analysis of Market Segments and Major Growth Areas in the Machine Learning (ML) Feature Lineage Tools Market - openPR.com - February 16th, 2026 [February 16th, 2026]
- Apple Makes One Of Its Largest Ever Acquisitions, Buys The Israeli Machine Learning Firm, Q.ai - Wccftech - February 1st, 2026 [February 1st, 2026]
- Keysights Machine Learning Toolkit to Speed Device Modeling and PDK Dev - All About Circuits - February 1st, 2026 [February 1st, 2026]
- University of Missouri Study: AI/Machine Learning Improves Cardiac Risk Prediction Accuracy - Quantum Zeitgeist - February 1st, 2026 [February 1st, 2026]
- How AI and Machine Learning Are Transforming Mobile Banking Apps - vocal.media - February 1st, 2026 [February 1st, 2026]
- Machine Learning in Production? What This Really Means - Towards Data Science - January 28th, 2026 [January 28th, 2026]
- Best Machine Learning Stocks of 2026 and How to Invest in Them - The Motley Fool - January 28th, 2026 [January 28th, 2026]
- Machine learning-based prediction of mortality risk from air pollution-induced acute coronary syndrome in the Western Pacific region - Nature - January 28th, 2026 [January 28th, 2026]
- Machine Learning Predicts the Strength of Carbonated Recycled Concrete - AZoBuild - January 28th, 2026 [January 28th, 2026]
- Vertiv Next Predict is a new AI-powered, managed service that combines field expertise and advanced machine learning algorithms to anticipate issues... - January 28th, 2026 [January 28th, 2026]
- Machine Learning in Network Security: The 2026 Firewall Shift - openPR.com - January 28th, 2026 [January 28th, 2026]
- Why IBMs New Machine-Learning Model Is a Big Deal for Next-Generation Chips - TipRanks - January 24th, 2026 [January 24th, 2026]
- A no-compromise amplifier solution: Synergy teams up with Wampler and Friedman to launch its machine-learning power amp and promises to change the... - January 24th, 2026 [January 24th, 2026]
- Our amplifier learns your cabinets impedance through controlled sweeps and continues to monitor it in real-time: Synergys Power Amp Machine-Learning... - January 24th, 2026 [January 24th, 2026]
- Machine Learning Studied to Predict Response to Advanced Overactive Bladder Therapies - Sandip Vasavada - UroToday - January 24th, 2026 [January 24th, 2026]
- Blending Education, Machine Learning to Detect IV Fluid Contaminated CBCs, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Why its critical to move beyond overly aggregated machine-learning metrics - MIT News - January 24th, 2026 [January 24th, 2026]
- Machine Learning Lends a Helping Hand to Prosthetics - AIP Publishing LLC - January 24th, 2026 [January 24th, 2026]
- Hassan Taher Explains the Fundamentals of Machine Learning and Its Relationship to AI - mitechnews.com - January 24th, 2026 [January 24th, 2026]
- Keysight targets faster PDK development with machine learning toolkit - eeNews Europe - January 24th, 2026 [January 24th, 2026]
- Training and external validation of machine learning supervised prognostic models of upper tract urothelial cancer (UTUC) after nephroureterectomy -... - January 24th, 2026 [January 24th, 2026]
- Age matters: a narrative review and machine learning analysis on shared and separate multidimensional risk domains for early and late onset suicidal... - January 24th, 2026 [January 24th, 2026]
- Uncovering Hidden IV Fluid Contamination Through Machine Learning, With Carly Maucione, MD - HCPLive - January 24th, 2026 [January 24th, 2026]
- Machine learning identifies factors that may determine the age of onset of Huntington's disease - Medical Xpress - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - WEF expands Fourth Industrial Revolution Network - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- Machine-learning analysis reclassifies armed conflicts into three new archetypes - The Brighter Side of News - January 24th, 2026 [January 24th, 2026]
- Machine learning and AI the future of drought monitoring in Canada - sasktoday.ca - January 24th, 2026 [January 24th, 2026]
- Machine learning revolutionises the development of nanocomposite membranes for CO capture - European Coatings - January 24th, 2026 [January 24th, 2026]
- AI and Machine Learning - Leading data infrastructure is helping power better lives in Sunderland - Smart Cities World - January 24th, 2026 [January 24th, 2026]
- How banks are responsibly embedding machine learning and GenAI into AML surveillance - Compliance Week - January 20th, 2026 [January 20th, 2026]
- Enhancing Teaching and Learning of Vocational Skills through Machine Learning and Cognitive Training (MCT) - Amrita Vishwa Vidyapeetham - January 20th, 2026 [January 20th, 2026]
- New Research in Annals of Oncology Shows Machine Learning Revelation of Global Cancer Trend Drivers - Oncodaily - January 20th, 2026 [January 20th, 2026]
- Machine learning-assisted mapping of VT ablation targets: progress and potential - Hospital Healthcare Europe - January 20th, 2026 [January 20th, 2026]
- Machine Learning Achieves Runtime Optimisation for GEMM with Dynamic Thread Selection - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- Machine learning algorithm predicts Bitcoin price on January 31, 2026 - Finbold - January 20th, 2026 [January 20th, 2026]
- AI and Machine Learning Transform Baldness Detection and Management - Bioengineer.org - January 20th, 2026 [January 20th, 2026]
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]