Why Machine Learning is a central part of business operations – Intelligent CIO
To make decisions more quickly and accurately, enterprises are increasingly turning to Machine Learning, arguably todays most practical application of Artificial Intelligence (AI). Machine Learning is a type of AI that allows software applications to become more accurate at predicting outcomes without being explicitly programmed to do so. Machine Learning algorithms use historical data as input to predict new output values. Industry pundits share insights why Machine Learning has been made a central part of business operations.
As organisations emerge from the lockdown restrictions that were imposed on businesses because of the COVID-19 pandemic, Machine Learning has taken centre stage because it gives enterprises a view of trends in customer behaviour and business operational patterns, as well as supports the development of new products. Many of todays leading multinational companies, such as Facebook, Google and Uber, have made Machine Learning a central part of their operations. Machine Learning has become a significant competitive differentiator for many companies across the Middle East and Africa (MEA).
According to research firm Gartner, the adoption of Machine Learning in the enterprise is being catalysed by Digital Transformation, the need for democratisation and the urgency of industrialisation. The firm says 48% of respondents to the 2022 Gartner CIO and Technology Executive Survey have already deployed or plan to deploy AI/Machine Learning in the next 12 months. And Gartner said that the on-going Digital Transformation requires better and faster but also ethical decision making, enabled by advances in decision intelligence and AI governance.
Gartner said one of the most prominent reasons why the IT industry is seeing an increasing enterprise adoption of Machine Learning is the desire to bring the power of Machine Learning to a widening audience the democratisation of data science and Machine Learning (DSML), lowering the barrier to entry which is enabled by technical advances in automation and augmentation.
Farhan Choudhary, Principal Analyst, Gartner, said to assess where Machine Learning can be applied in the enterprise, the CIO and IT team first need to determine the what of the problem statement, for example, what business KPIs does the organisation want to be impacted through the work in Machine Learning, and second, the how of the problem statement, i.e., how will the organisation accomplish this task.
Choudhary said Machine Learning can be applied across many parts of the business, some applications or opportunities could be low hanging fruits, some could be money-pits or some cutting edge. He said a thorough and systematic assessment of opportunities should be conducted before determining where Machine Learning can be applied by enterprise IT, and where a democratised approach can be followed.
This should be a top-down approach. Lets assume were in retail business and we want to leverage Machine Learning while working in collaboration with enterprise IT to generate tangible business value. The first order of business is to conduct an assessment on business value we expect the project to generate or KPIs that it would impact, and the feasibility of using Machine Learning in the enterprise. Say our priorities are revenue growth, and we want to use Machine Learning to impact the volume of sales; then, this could be done through use of Machine Learning in products and services, sales and marketing or in customer service (these are our separate lines of businesses that can leverage Machine Learning), he said.
Choudhary pointed out that there are opportunities in sales and marketing, R&D, corporate legal, human capital management, customer service, IT operations, software development and testing, and many other areas where Machine Learning can be applied.
Mike Brooks, Global Director, Asset Performance Management, Aspen, said: Machine Learningalgorithms are basically free from many open sources. It seems everybody is using it but Machine Learning itself is hardly the secret sauce, but it is how you use it and what for. The biggest issue with Machine Learningis the data science skills required to implement and the absolute necessity to engage the subject matter experts with deep familiarity of the problem space, including perhaps, process, mechanical, reliability, planning/scheduling personnel, etc.
Brooks said Aspen has embed Machine Learningand engineering smarts in anomaly and failure/degradation agents that exercise every few minutes to do the Machine Learning and guidance to ensure they hunt for causation rather than simple correlation is differentiating methodology.
The methodology copied from the iPhone ideas is that the smarts are on the inside doing the complex and hard work, so you do not have to. That approach assures it is easier and faster to do Machine Learningimplementations on specific equipment with an application that scales rapidly and easily, meaning faster time to cash for many assets. The alternative is a pure Machine Learning approach on a specific Machine Learning platform that takes the user nowhere near the problem space where every application is an open project every time complete with fragility and grand requirements for domain expertise.
With Machine Learning witnessing enterprise-wide adoption of the technology in various business environments across MEA, organisations are being urged to establish a business case before embarking on any project.
Ramprakash Ramamoorthy, Director, AI Research, ManageEngine, said since the onset of the pandemic, the first touchpoint for many businesses has been digital. Ramamoorthy said organisations must remain digitally competitive to stay afloat, and they achieve this by implementing newer technologies like Machine Learning. He said another factor is the ongoing AI summer, during which there have been a lot of investments in AI and other associated technologies, which in turn has increased the adoption of Machine Learning across the globe.
Ramamoorthy pointed out that because Machine Learning enables enterprise software to move from process automation to decision automation, using Machine Learning involves rewriting current, traditionally deterministic processes and workflows to make them probabilistic.
For instance, a traditional anomaly system uses the bell curve to identify anomalies, whereas an Machine Learning-powered anomaly system identifies anomalies along with the probability of an outage occurring. CIOs have to drive these changes and incentivise teams to use and integrate new technologies like ML into their everyday workflows by citing the impact they could have on business growth, he said.
Walid Issa, Senior Manager, Pre-sales and Solutions Engineering Middle East Region, NetApp, said Artificial Intelligence and Machine Learning have moved beyond the realm of concept into real-world application, representing the great opportunity to stay competitive, drive growth, and cut costs.
Issa said AI and ML are well suited in different verticals such as manufacturing, healthcare, telecom, public sector, retail, finance and automatise. If I select healthcare as an example, Artificial Intelligence is transforming healthcare in ways we never thought possible. And it really is all about data. Using data, AI and ML can help healthcare professionals make more informed, accurate, and proactive assessments and diagnoses. The ability to analyse data in real time enables healthcare professionals to improve the quality of life for patients and ultimately save lives. This will enable proactive diagnoses using smarter healthcare tools, help physicians find the right data faster and keep patients and healthcare organisations safe from cyber criminals and attacks, he said.
CIOs and IT leaders should involve business to ensure buy-in for a Machine Learning system deployment in their organisation as that ensures success in the organisation.
Chris Royles, EMEA Field CTO, Cloudera, said CIOs and IT leaders will be influential in building and maintaining a data culture in the organisation. Royles said helping develop a data literacy programme and working across lines of business to instill the importance of data in each domain is an important start. We then suggest a democratised approach to data management where ownership of the business domain and data problems are managed by those closest to the systems. It is then for each domain to identify the opportunities they can apply to their data processes to introduce Machine Learning, he said.
Kevin Thompson, Cloud Operations Manager, Sage Africa, Middle East and Asia Pacific, said one of the key elements to consider is change management since ML and AI could potentially take over many of the tasks human workers currently execute manually. Thompson said businesses should look at how these new technologies can augment, rather than replace their people, and show people how the technology will free them from routine, repetitive processes so they can focus on work that needs more creative, strategic, or emotional intelligence.
According to Thompson, within a few years, ML will be so deeply embedded into every computer system that the industry will take it for granted. To get ROI, organisations should start out with a clear idea of the business outcome they would like to achieve and how they will measure success. For example, they might want to use Machine Learning to generate efficiencies in customer service. In this case, they could measure call centre volumes versus customers served by a ML/AI-powered chatbot. An insurance company could use ML for fraud detection and measure the value of the fraudulent claims the system picks up, he said.
Facebook Twitter LinkedInEmailWhatsApp
Originally posted here:
Why Machine Learning is a central part of business operations - Intelligent CIO
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]