What is quantum computing?
Quantum computing is an area of study focused on the development of computer based technologies centered around the principles ofquantum theory. Quantum theory explains the nature and behavior of energy and matter on thequantum(atomic and subatomic) level. Quantum computing uses a combination ofbitsto perform specific computational tasks. All at a much higher efficiency than their classical counterparts. Development ofquantum computersmark a leap forward in computing capability, with massive performance gains for specific use cases. For example quantum computing excels at like simulations.
The quantum computer gains much of its processing power through the ability for bits to be in multiple states at one time. They can perform tasks using a combination of 1s, 0s and both a 1 and 0 simultaneously. Current research centers in quantum computing include MIT, IBM, Oxford University, and the Los Alamos National Laboratory. In addition, developers have begun gaining access toquantum computers through cloud services.
Quantum computing began with finding its essential elements. In 1981, Paul Benioff at Argonne National Labs came up with the idea of a computer that operated with quantum mechanical principles. It is generally accepted that David Deutsch of Oxford University provided the critical idea behind quantum computing research. In 1984, he began to wonder about the possibility of designing a computer that was based exclusively on quantum rules, publishing a breakthrough paper a few months later.
Quantum Theory
Quantum theory's development began in 1900 with a presentation by Max Planck. The presentation was to the German Physical Society, in which Planck introduced the idea that energy and matter exists in individual units. Further developments by a number of scientists over the following thirty years led to the modern understanding of quantum theory.
Quantum Theory
Quantum theory's development began in 1900 with a presentation by Max Planck. The presentation was to the German Physical Society, in which Planck introduced the idea that energy and matter exists in individual units. Further developments by a number of scientists over the following thirty years led to the modern understanding of quantum theory.
The Essential Elements of Quantum Theory:
Further Developments of Quantum Theory
Niels Bohr proposed the Copenhagen interpretation of quantum theory. This theory asserts that a particle is whatever it is measured to be, but that it cannot be assumed to have specific properties, or even to exist, until it is measured. This relates to a principle called superposition. Superposition claims when we do not know what the state of a given object is, it is actually in all possible states simultaneously -- as long as we don't look to check.
To illustrate this theory, we can use the famous analogy of Schrodinger's Cat. First, we have a living cat and place it in a lead box. At this stage, there is no question that the cat is alive. Then throw in a vial of cyanide and seal the box. We do not know if the cat is alive or if it has broken the cyanide capsule and died. Since we do not know, the cat is both alive and dead, according to quantum law -- in a superposition of states. It is only when we break open the box and see what condition the cat is in that the superposition is lost, and the cat must be either alive or dead.
The principle that, in some way, one particle can exist in numerous states opens up profound implications for computing.
A Comparison of Classical and Quantum Computing
Classical computing relies on principles expressed by Boolean algebra; usually Operating with a 3 or 7-modelogic gateprinciple. Data must be processed in an exclusive binary state at any point in time; either 0 (off / false) or 1 (on / true). These values are binary digits, or bits. The millions of transistors and capacitors at the heart of computers can only be in one state at any point. In addition, there is still a limit as to how quickly these devices can be made to switch states. As we progress to smaller and faster circuits, we begin to reach the physical limits of materials and the threshold for classical laws of physics to apply.
The quantum computer operates with a two-mode logic gate:XORand a mode called QO1 (the ability to change 0 into a superposition of 0 and 1). In a quantum computer, a number of elemental particles such as electrons or photons can be used. Each particle is given a charge, or polarization, acting as a representation of 0 and/or 1. Each particle is called a quantum bit, or qubit. The nature and behavior of these particles form the basis of quantum computing and quantum supremacy. The two most relevant aspects of quantum physics are the principles of superposition andentanglement.
Superposition
Think of a qubit as an electron in a magnetic field. The electron's spin may be either in alignment with the field, which is known as aspin-upstate, or opposite to the field, which is known as aspin-downstate. Changing the electron's spin from one state to another is achieved by using a pulse of energy, such as from alaser. If only half a unit of laser energy is used, and the particle is isolated the particle from all external influences, the particle then enters a superposition of states. Behaving as if it were in both states simultaneously.
Each qubit utilized could take a superposition of both 0 and 1. Meaning, the number of computations a quantum computer could take is 2^n, where n is the number of qubits used. A quantum computer comprised of 500 qubits would have a potential to do 2^500 calculations in a single step. For reference, 2^500 is infinitely more atoms than there are in the known universe. These particles all interact with each other via quantum entanglement.
In comparison to classical, quantum computing counts as trueparallel processing. Classical computers today still only truly do one thing at a time. In classical computing, there are just two or more processors to constitute parallel processing.EntanglementParticles (like qubits) that have interacted at some point retain a type can be entangled with each other in pairs, in a process known ascorrelation. Knowing the spin state of one entangled particle - up or down -- gives away the spin of the other in the opposite direction. In addition, due to the superposition, the measured particle has no single spin direction before being measured. The spin state of the particle being measured is determined at the time of measurement and communicated to the correlated particle, which simultaneously assumes the opposite spin direction. The reason behind why is not yet explained.
Quantum entanglement allows qubits that are separated by large distances to interact with each other instantaneously (not limited to the speed of light). No matter how great the distance between the correlated particles, they will remain entangled as long as they are isolated.
Taken together, quantum superposition and entanglement create an enormously enhanced computing power. Where a 2-bit register in an ordinary computer can store only one of four binary configurations (00, 01, 10, or 11) at any given time, a 2-qubit register in a quantum computer can store all four numbers simultaneously. This is because each qubit represents two values. If more qubits are added, the increased capacity is expanded exponentially.
Quantum Programming
Quantum computing offers an ability to write programs in a completely new way. For example, a quantum computer could incorporate a programming sequence that would be along the lines of "take all the superpositions of all the prior computations." This would permit extremely fast ways of solving certain mathematical problems, such as factorization of large numbers.
The first quantum computing program appeared in 1994 by Peter Shor, who developed a quantum algorithm that could efficiently factorize large numbers.
The Problems - And Some Solutions
The benefits of quantum computing are promising, but there are huge obstacles to overcome still. Some problems with quantum computing are:
There are many problems to overcome, such as how to handle security and quantum cryptography. Long time quantum information storage has been a problem in the past too. However, breakthroughs in the last 15 years and in the recent past have made some form of quantum computing practical. There is still much debate as to whether this is less than a decade away or a hundred years into the future. However, the potential that this technology offers is attracting tremendous interest from both the government and the private sector. Military applications include the ability to break encryptions keys via brute force searches, while civilian applications range from DNA modeling to complex material science analysis.
The rest is here:
What is quantum computing?
- A Once-in-a-Decade Investment Opportunity: 3 Quantum Computing Stocks to Buy and Hold - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Is Already Hitting BitcoinHeres How - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Investors Are Overlooking a Monumental Headwind With Quantum Computing Stocks IonQ and Rigetti Computing - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- After Rigetti Announced a Quantum Computing Delay, How Should You Play RGTI Stock in January 2026? - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- New insight into light-matter thermalization could advance neutral-atom quantum computing - Phys.org - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Stocks: Separating Hype From Reality in 2026 - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Coinbase launches expert board to assess quantum computing threat to crypto - Fortune - January 22nd, 2026 [January 22nd, 2026]
- How can we scale quantum computing in the most energy-efficient way? - The World Economic Forum - January 22nd, 2026 [January 22nd, 2026]
- Does Quantum Computing (QUBT) Have the Scale to Turn Photonics Deals into Durable Revenue? - simplywall.st - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Is Already Hitting BitcoinHeres How - BeInCrypto - January 22nd, 2026 [January 22nd, 2026]
- 2 Top Quantum Computing Stocks to Buy in January - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Quantum computing firm dangles $22,500 Bitcoin prize all you have to do is uncover a private key hidden inside a quantum-optimized problem - Tom's... - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Achieves Database Optimisation with Sub-5 Second Runtime Performance - Quantum Zeitgeist - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing (NASDAQ:QUBT) Trading Down 6.2% - Here's What Happened - MarketBeat - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Stocks Surge Over 1000% in Three Years - Intellectia AI - January 22nd, 2026 [January 22nd, 2026]
- Could IonQ Become the Nvidia of Quantum Computing? - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Horizon Quantum Explores Faster Ways to Fault-Tolerant Quantum Computing with Alice & Bob - Business Wire - January 22nd, 2026 [January 22nd, 2026]
- 3 Key Ways D-Wave Is Developing an Advantage in Quantum Computing - MarketBeat - January 22nd, 2026 [January 22nd, 2026]
- 2 Top Quantum Computing Stocks to Buy in January - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- IonQ Achieves 99.99% Accuracy in Quantum Computing, Aiming to Build Ecosystem - Intellectia AI - January 20th, 2026 [January 20th, 2026]
- Is This $8 Billion Quantum Computing Stock Too Cheap to Ignore Now? - Yahoo Finance - January 20th, 2026 [January 20th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- What Is the Best Quantum Computing Stock to Own for the Next 5 Years? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Can Rigetti Become the Backbone of Quantum Computing? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Is This $8 Billion Quantum Computing Stock Too Cheap to Ignore Now? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Can Rigetti Become the Backbone of Quantum Computing? - Nasdaq - January 20th, 2026 [January 20th, 2026]
- Alphabet and Microsoft Achieve Quantum Computing Breakthroughs with Cash Flows Over $24 Billion - Intellectia AI - January 20th, 2026 [January 20th, 2026]
- Quantum Computing Advances Strongly Correlated Systems with Handover-Iterative VQE and SHCI Convergence - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- NVIDIAs Strategy Is Shaping The Future Of Quantum Computing - Forbes - January 20th, 2026 [January 20th, 2026]
- After Rigetti Announced a Quantum Computing Delay, How Should You Play RGTI Stock in January 2026? - Barchart.com - January 20th, 2026 [January 20th, 2026]
- Summit on quantum computing tomorrow - Times of India - January 20th, 2026 [January 20th, 2026]
- Jefferies Analyst Dumps Bitcoin Over Quantum Computing Fears, Buys Gold - Bitcoin Magazine - January 18th, 2026 [January 18th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 18th, 2026 [January 18th, 2026]
- Smart Investor: Bank Earnings, Index ETFs, and Quantum Computing Stocks - morningstar.com - January 18th, 2026 [January 18th, 2026]
- Why Quantum Computing Stock Plummeted 38% Last Year but Is Soaring in 2026 - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- IonQ Stock Prediction: Here's Where the Quantum Computing Play Will Be in 1 Year - Nasdaq - January 18th, 2026 [January 18th, 2026]
- Opinion: Will Quantum Computing Be a Quantum Leap for Higher Ed? - GovTech - January 18th, 2026 [January 18th, 2026]
- Fear that quantum computing is on the cusp of cracking cryptocurrency's encryption spurs a global investment firm to remove Bitcoin from... - January 18th, 2026 [January 18th, 2026]
- IonQ Stock Prediction: Here's Where the Quantum Computing Play Will Be in 1 Year - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- Alphabet Invests in Quantum Computing with Capex of $93 Billion - Intellectia AI - January 18th, 2026 [January 18th, 2026]
- Neutral-atom arrays, a rapidly emerging quantum computing platform, get a boost from researchers - Phys.org - January 18th, 2026 [January 18th, 2026]
- Quantum Computing Could Be a $72 Billion Opportunity by 2035. Can IonQ Capture It? - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- A Wall Street analyst warns that quantum computing could eventually crack the cryptography of bitcoin - Business Insider - January 18th, 2026 [January 18th, 2026]
- BTQ Technologies Added To $524.5M VanEck Quantum Computing ETF - Quantum Zeitgeist - January 18th, 2026 [January 18th, 2026]
- Quantum Computing Threat Raises Doubts Over Bitcoin Security - Evrim Aac - January 18th, 2026 [January 18th, 2026]
- Jefferies Removes 10% Bitcoin Allocation Citing Quantum Computing Threats - Intellectia AI - January 18th, 2026 [January 18th, 2026]
- Jefferies Wood drops 10% bitcoin allocation over quantum computing fears - OODAloop - January 18th, 2026 [January 18th, 2026]
- Jefferies Strategist Dumps 10% Bitcoin Allocation Over Quantum Computing Fears - Yellow.com - January 18th, 2026 [January 18th, 2026]
- Jefferies Wood drops Bitcoin on threat from quantum computing - MSN - January 18th, 2026 [January 18th, 2026]
- If I Could Own Only 1 Quantum Computing Stock in 2026, This Would Be It - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- Rigetti and Quantum Computing Stocks Are a Buy, Says Analyst. Look Past the Criticism of Both. - Barron's - January 16th, 2026 [January 16th, 2026]
- Jefferies Wood Drops Bitcoin on Threat From Quantum Computing - Bloomberg.com - January 16th, 2026 [January 16th, 2026]
- Jefferies' Wood drops 10% bitcoin allocation over quantum computing fears - The Block - January 16th, 2026 [January 16th, 2026]
- Rigetti, Quantum Computing initiated with bullish views at Rosenblatt - Seeking Alpha - January 16th, 2026 [January 16th, 2026]
- From Chat to Act: How Quantum Computing Power Fuels the Ascent of AI Agents - 36Kr - January 16th, 2026 [January 16th, 2026]
- Meet the Quantum Computing Stock That Billionaires Can't Get Enough Of (Hint: It's Not IonQ, Rigetti Computing, or D-Wave Quantum) - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- 2 No-Brainer Quantum Computing Stocks to Buy Hand Over Fist for 2026 - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- Top Wall Street equity strategist exits Bitcoin over quantum computing threat - Crypto Briefing - January 16th, 2026 [January 16th, 2026]
- Jefferies Abandons Bitcoin and Shifts 10% Back into Gold amid Quantum Computing Fears - TipRanks - January 16th, 2026 [January 16th, 2026]
- Has Bitcoin peaked? Why Jefferies removes 10% allocation; quantum computing, gold & more - MSN - January 16th, 2026 [January 16th, 2026]
- IonQ's Biggest Advantage in Quantum Computing Could Be Its Biggest Weakness - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- With a Growing Quantum Computing Threat, Consider these 5 Stocks Before They Run - The Globe and Mail - January 16th, 2026 [January 16th, 2026]
- Quantum Computing Stocks IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing Inc. Have Served Up an $840 Million Warning for Wall Street -... - January 16th, 2026 [January 16th, 2026]
- Jefferies withdraws from bitcoin, shifts to gold amid concerns of quantum computing - Mint - January 16th, 2026 [January 16th, 2026]
- Half of All Bitcoin Could Be Stolen in Hours When Quantum Computing Arrives, Says Jefferies - NDTV Profit - January 16th, 2026 [January 16th, 2026]
- Quantum Computing: Plenty Of Cash, Still Waiting On Traction (NASDAQ:QUBT) - Seeking Alpha - January 16th, 2026 [January 16th, 2026]
- From quantum computing to robotaxi rollouts: Tech trends expected to shape 2026 - Mainebiz - January 16th, 2026 [January 16th, 2026]
- Xanadu and Thorlabs partner to advance optical controls for photonic quantum computing - Stocktwits - January 16th, 2026 [January 16th, 2026]
- Project Eleven Secures $20 Million Series A to Protect Digital Assets from Quantum Threats - Quantum Computing Report - January 16th, 2026 [January 16th, 2026]
- EeroQ Demonstrates Scalable Control Architecture Capable of Controlling One Million Qubits with Less than 50 Control Lines - Quantum Computing Report - January 16th, 2026 [January 16th, 2026]
- If I Could Own Only 1 Quantum Computing Stock in 2026, This Would Be It - AOL.com - January 16th, 2026 [January 16th, 2026]
- Quantum Computing (QUBT) Stock Rises As Analyst Sees 'A Lot Of Ways To Win' - Benzinga - January 16th, 2026 [January 16th, 2026]
- Rigetti and quantum computing stocks are a buy, says analyst. Look past the criticism of both. - MSN - January 16th, 2026 [January 16th, 2026]
- Equal1: $60 Million Closed To Bring Quantum Computing To Standard Semiconductor Fabs - Pulse 2.0 - January 16th, 2026 [January 16th, 2026]
- Meet the Quantum Computing Stock That Billionaires Can't Get Enough Of (Hint: It's Not IonQ, Rigetti Computing, or D-Wave Quantum) - Nasdaq - January 16th, 2026 [January 16th, 2026]
- Quantum Computing Achieves Performance Gains with Thermodynamic Recycling and Information Erasure - Quantum Zeitgeist - January 16th, 2026 [January 16th, 2026]
- Want to Invest in Quantum Computing? These 3 Stocks Are Great Buys Right Now. - The Motley Fool - January 11th, 2026 [January 11th, 2026]
- A $550 Million Reason to Buy This Quantum Computing Stock Now - Barchart.com - January 11th, 2026 [January 11th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Barchart.com - January 11th, 2026 [January 11th, 2026]
- Want to invest in quantum computing? These 3 stocks are great buys right now. - MSN - January 11th, 2026 [January 11th, 2026]