What is quantum computing?
Quantum computing is an area of study focused on the development of computer based technologies centered around the principles ofquantum theory. Quantum theory explains the nature and behavior of energy and matter on thequantum(atomic and subatomic) level. Quantum computing uses a combination ofbitsto perform specific computational tasks. All at a much higher efficiency than their classical counterparts. Development ofquantum computersmark a leap forward in computing capability, with massive performance gains for specific use cases. For example quantum computing excels at like simulations.
The quantum computer gains much of its processing power through the ability for bits to be in multiple states at one time. They can perform tasks using a combination of 1s, 0s and both a 1 and 0 simultaneously. Current research centers in quantum computing include MIT, IBM, Oxford University, and the Los Alamos National Laboratory. In addition, developers have begun gaining access toquantum computers through cloud services.
Quantum computing began with finding its essential elements. In 1981, Paul Benioff at Argonne National Labs came up with the idea of a computer that operated with quantum mechanical principles. It is generally accepted that David Deutsch of Oxford University provided the critical idea behind quantum computing research. In 1984, he began to wonder about the possibility of designing a computer that was based exclusively on quantum rules, publishing a breakthrough paper a few months later.
Quantum Theory
Quantum theory's development began in 1900 with a presentation by Max Planck. The presentation was to the German Physical Society, in which Planck introduced the idea that energy and matter exists in individual units. Further developments by a number of scientists over the following thirty years led to the modern understanding of quantum theory.
Quantum Theory
Quantum theory's development began in 1900 with a presentation by Max Planck. The presentation was to the German Physical Society, in which Planck introduced the idea that energy and matter exists in individual units. Further developments by a number of scientists over the following thirty years led to the modern understanding of quantum theory.
The Essential Elements of Quantum Theory:
Further Developments of Quantum Theory
Niels Bohr proposed the Copenhagen interpretation of quantum theory. This theory asserts that a particle is whatever it is measured to be, but that it cannot be assumed to have specific properties, or even to exist, until it is measured. This relates to a principle called superposition. Superposition claims when we do not know what the state of a given object is, it is actually in all possible states simultaneously -- as long as we don't look to check.
To illustrate this theory, we can use the famous analogy of Schrodinger's Cat. First, we have a living cat and place it in a lead box. At this stage, there is no question that the cat is alive. Then throw in a vial of cyanide and seal the box. We do not know if the cat is alive or if it has broken the cyanide capsule and died. Since we do not know, the cat is both alive and dead, according to quantum law -- in a superposition of states. It is only when we break open the box and see what condition the cat is in that the superposition is lost, and the cat must be either alive or dead.
The principle that, in some way, one particle can exist in numerous states opens up profound implications for computing.
A Comparison of Classical and Quantum Computing
Classical computing relies on principles expressed by Boolean algebra; usually Operating with a 3 or 7-modelogic gateprinciple. Data must be processed in an exclusive binary state at any point in time; either 0 (off / false) or 1 (on / true). These values are binary digits, or bits. The millions of transistors and capacitors at the heart of computers can only be in one state at any point. In addition, there is still a limit as to how quickly these devices can be made to switch states. As we progress to smaller and faster circuits, we begin to reach the physical limits of materials and the threshold for classical laws of physics to apply.
The quantum computer operates with a two-mode logic gate:XORand a mode called QO1 (the ability to change 0 into a superposition of 0 and 1). In a quantum computer, a number of elemental particles such as electrons or photons can be used. Each particle is given a charge, or polarization, acting as a representation of 0 and/or 1. Each particle is called a quantum bit, or qubit. The nature and behavior of these particles form the basis of quantum computing and quantum supremacy. The two most relevant aspects of quantum physics are the principles of superposition andentanglement.
Superposition
Think of a qubit as an electron in a magnetic field. The electron's spin may be either in alignment with the field, which is known as aspin-upstate, or opposite to the field, which is known as aspin-downstate. Changing the electron's spin from one state to another is achieved by using a pulse of energy, such as from alaser. If only half a unit of laser energy is used, and the particle is isolated the particle from all external influences, the particle then enters a superposition of states. Behaving as if it were in both states simultaneously.
Each qubit utilized could take a superposition of both 0 and 1. Meaning, the number of computations a quantum computer could take is 2^n, where n is the number of qubits used. A quantum computer comprised of 500 qubits would have a potential to do 2^500 calculations in a single step. For reference, 2^500 is infinitely more atoms than there are in the known universe. These particles all interact with each other via quantum entanglement.
In comparison to classical, quantum computing counts as trueparallel processing. Classical computers today still only truly do one thing at a time. In classical computing, there are just two or more processors to constitute parallel processing.EntanglementParticles (like qubits) that have interacted at some point retain a type can be entangled with each other in pairs, in a process known ascorrelation. Knowing the spin state of one entangled particle - up or down -- gives away the spin of the other in the opposite direction. In addition, due to the superposition, the measured particle has no single spin direction before being measured. The spin state of the particle being measured is determined at the time of measurement and communicated to the correlated particle, which simultaneously assumes the opposite spin direction. The reason behind why is not yet explained.
Quantum entanglement allows qubits that are separated by large distances to interact with each other instantaneously (not limited to the speed of light). No matter how great the distance between the correlated particles, they will remain entangled as long as they are isolated.
Taken together, quantum superposition and entanglement create an enormously enhanced computing power. Where a 2-bit register in an ordinary computer can store only one of four binary configurations (00, 01, 10, or 11) at any given time, a 2-qubit register in a quantum computer can store all four numbers simultaneously. This is because each qubit represents two values. If more qubits are added, the increased capacity is expanded exponentially.
Quantum Programming
Quantum computing offers an ability to write programs in a completely new way. For example, a quantum computer could incorporate a programming sequence that would be along the lines of "take all the superpositions of all the prior computations." This would permit extremely fast ways of solving certain mathematical problems, such as factorization of large numbers.
The first quantum computing program appeared in 1994 by Peter Shor, who developed a quantum algorithm that could efficiently factorize large numbers.
The Problems - And Some Solutions
The benefits of quantum computing are promising, but there are huge obstacles to overcome still. Some problems with quantum computing are:
There are many problems to overcome, such as how to handle security and quantum cryptography. Long time quantum information storage has been a problem in the past too. However, breakthroughs in the last 15 years and in the recent past have made some form of quantum computing practical. There is still much debate as to whether this is less than a decade away or a hundred years into the future. However, the potential that this technology offers is attracting tremendous interest from both the government and the private sector. Military applications include the ability to break encryptions keys via brute force searches, while civilian applications range from DNA modeling to complex material science analysis.
The rest is here:
What is quantum computing?
- AI and quantum computing are converging. Both could get a boost - qz.com - October 15th, 2025 [October 15th, 2025]
- Quantum computing on the verge: a look at the quantum marketplace of today - Physics World - October 15th, 2025 [October 15th, 2025]
- Quantum computing stocks soared again yesterday. The reason why may surprise even their biggest boosters - Fast Company - October 15th, 2025 [October 15th, 2025]
- IONQ, RGTI, QBTS: Which Is the Better Quantum Computing Stock? - TipRanks - October 15th, 2025 [October 15th, 2025]
- D-Wave Helps Launch Q-Alliance to Build Italys Quantum Computing Hub in Lombardy - HPCwire - October 15th, 2025 [October 15th, 2025]
- Quantum crystals offer a blueprint for the future of computing and chemistry - Phys.org - October 15th, 2025 [October 15th, 2025]
- Qilimanjaro and QURECA Partner to Strengthen Quantum Education and Workforce Development - Quantum Computing Report - October 15th, 2025 [October 15th, 2025]
- Quantum Computing and the Next Big Threat to Encryption - The Engineer - Home - October 15th, 2025 [October 15th, 2025]
- Bose Quantum Secures Hundreds of Millions of Yuan in Series A++ Financing: Nobel Prize Usher in the Quantum Computing Exploration Era - 36Kr - October 15th, 2025 [October 15th, 2025]
- Aramco, NVIDIA Expect Gusher of Energy Insights From New Quantum Computing Emulator - The Quantum Insider - October 15th, 2025 [October 15th, 2025]
- 'Make or break': Why the next few years will be crucial for this Canadian company and quantum computing - Financial Post - October 15th, 2025 [October 15th, 2025]
- Isentroniq Raises 7.5M ($8.7M USD) to Advance Wiring Technology for Superconducting Qubits - Quantum Computing Report - October 15th, 2025 [October 15th, 2025]
- Why Is Quantum Computing Inc. Stock Jumping Today? - The Motley Fool - October 15th, 2025 [October 15th, 2025]
- 2 Pure-Play Quantum Computing Stocks That Can Plunge Up to 62%, According to Select Wall Street Analysts - Nasdaq - October 15th, 2025 [October 15th, 2025]
- Rigetti Computing Stock: Whats Next for the Quantum Computing Pioneer in the Next 3 Years? - TECHi - October 15th, 2025 [October 15th, 2025]
- Quantum computing is the next AI: are you ready for it? - Fast Company - October 13th, 2025 [October 13th, 2025]
- 2 Top Stocks in Quantum Computing and Robotics That Could Soar in 2026 - The Motley Fool - October 13th, 2025 [October 13th, 2025]
- Quantum computing firm with Seattle-area presence raising billions for expansion - The Business Journals - October 13th, 2025 [October 13th, 2025]
- 3 Quantum Computing Stocks That Could Help Make You a Fortune - The Motley Fool - October 13th, 2025 [October 13th, 2025]
- What Is One of the Best Quantum Computing Stocks to Buy Before Wall Street Catches On? - Yahoo Finance - October 13th, 2025 [October 13th, 2025]
- Quantum Computing Stocks IonQ, Rigetti, and D-Wave Have Soared Up to 5,400% Over the Trailing Year -- but History Offers a Dire Warning - Yahoo... - October 13th, 2025 [October 13th, 2025]
- BTQ Technologies and University of Cambridge Partner to Advance Inverse-Design Quantum Photonic Devices - Quantum Computing Report - October 13th, 2025 [October 13th, 2025]
- French-based quantum computing company to open U.S. headquarters in Chicago - The Daily Line - October 13th, 2025 [October 13th, 2025]
- What is quantum computing and why is Palm Beach County so interested in it? - The Palm Beach Post - October 11th, 2025 [October 11th, 2025]
- Alice & Bob Shortens Timeline to Quantum Computing Applications in Healthcare and Agriculture - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- WisdomTree rolls out quantum computing fund (WT:NYSE) - Seeking Alpha - October 11th, 2025 [October 11th, 2025]
- Individual electrons trapped and controlled above 1 K, easing cooling limits for quantum computing - Phys.org - October 11th, 2025 [October 11th, 2025]
- Quantum Computing Stocks To Keep An Eye On - October 7th - MarketBeat - October 11th, 2025 [October 11th, 2025]
- Analysts See over 20% Upside in These 3 Quantum Computing Stocks 10/10/2025 - TipRanks - October 11th, 2025 [October 11th, 2025]
- These Nobel Prize Winners Paved The Way For Quantum Computing - Forbes - October 11th, 2025 [October 11th, 2025]
- The Quantum Leap in Marketing: How Quantum Computing Will Redefine Analytics - Eye On Annapolis - October 11th, 2025 [October 11th, 2025]
- A Nobel for the physics that ushered in quantum computing - The Economist - October 11th, 2025 [October 11th, 2025]
- The Next Big Theme: Positioning For Early Growth In Quantum Computing - Seeking Alpha - October 11th, 2025 [October 11th, 2025]
- Quantum Computing Stocks Defy Broader Market Headwinds on October 10, 2025: A Glimpse into the Future of High-Tech Investment - FinancialContent - October 11th, 2025 [October 11th, 2025]
- Stockholm-based FirstQFM raises 1.2 million to accelerate commercial quantum computing with proprietary foundation models - EU-Startups - October 11th, 2025 [October 11th, 2025]
- Quantum Computing Stocks IonQ, Rigetti, and D-Wave Have Soared Up to 5,400% Over the Trailing Year -- but History Offers a Dire Warning - AOL.com - October 11th, 2025 [October 11th, 2025]
- Why Rigetti Computing (RGTI) Is Up 33.1% After Securing $5.7 Million in Quantum Hardware Orders - simplywall.st - October 11th, 2025 [October 11th, 2025]
- Tech Communication in London, UK - Defending Against Emerging Threat with Quantum Computing - PR Newswire - October 11th, 2025 [October 11th, 2025]
- Quantum Computing to Raise $750 Million in Private Placement. The Stock Falls. - Barron's - October 9th, 2025 [October 9th, 2025]
- If You Own Quantum Computing Stocks IonQ, Rigetti, or D-Wave, the Time to Be Fearful When Others Are Greedy Has Arrived - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Physics Nobel: Three win prize for paving way for very powerful computers - BBC - October 9th, 2025 [October 9th, 2025]
- 3 Genius Ways to Invest in Quantum Computing and Artificial Intelligence (AI) - The Motley Fool - October 9th, 2025 [October 9th, 2025]
- Prediction: This Artificial Intelligence (AI) Stock Will Be the Nvidia of Quantum Computing by 2035 - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- D-Wave and the University of Southern California Bring Quantum Computing to LA Tech Week - Business Wire - October 9th, 2025 [October 9th, 2025]
- If You Own Quantum Computing Stocks IonQ, Rigetti, or D-Wave, the Time to Be Fearful When Others Are Greedy Has Arrived - The Motley Fool - October 9th, 2025 [October 9th, 2025]
- 3 Quantum Computing Stocks that Could Be The Next Nvidia - 24/7 Wall St. - October 9th, 2025 [October 9th, 2025]
- Why Quantum Computing Threat Will Impact Absolutely Everyone In Security: Experts - CRN Magazine - October 9th, 2025 [October 9th, 2025]
- What Are Memristors And Why Do They Matter For Quantum Computing? - The Quantum Insider - October 9th, 2025 [October 9th, 2025]
- Quantum Computing As a Service Enables Access to Programmable Bits for Utility Computing Applications - Quantum Zeitgeist - October 9th, 2025 [October 9th, 2025]
- What Is One of the Best Quantum Computing Stocks for Growth Investors? - The Motley Fool - October 9th, 2025 [October 9th, 2025]
- Quantum Computing Taps Investors for $750 million in Oversubscribed Deal - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Quantum Computing Inc. Announces $750 Million Oversubscribed Private Placement of Common Stock Priced at the Market Under Nasdaq Rules - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Quantum Leap or Speculative Bubble? Wall Street Bets Big on the Future of Computing - FinancialContent - October 7th, 2025 [October 7th, 2025]
- Analysts Think This Quantum Computing Stock Can Gain 80%. Should You Buy It Here? - Yahoo Finance - October 7th, 2025 [October 7th, 2025]
- IonQ and Rigetti stocks and the quantum computing bubble - Invezz - October 7th, 2025 [October 7th, 2025]
- These Quantum Computing Stocks Could Be the Secret Winners of the AI Boom - The Motley Fool - October 7th, 2025 [October 7th, 2025]
- Quantum Computing (QUBT) Shares Are Sliding Today: Here's Why - Benzinga - October 7th, 2025 [October 7th, 2025]
- This Little-Known Company Is Betting Big on Quantum Computing. Should You Buy Its Stock Here? - MSN - October 7th, 2025 [October 7th, 2025]
- Analysts Think This Quantum Computing Stock Can Gain 80%. Should You Buy It Here? - MSN - October 7th, 2025 [October 7th, 2025]
- This Little-Known Company Is Betting Big on Quantum Computing. Should You Buy Its Stock Here? - Barchart.com - October 7th, 2025 [October 7th, 2025]
- Where Will Quantum Computing Inc. Be in 1 Year? - Yahoo Finance - October 7th, 2025 [October 7th, 2025]
- Quobly reinforces its leadership with a holistic governance model for silicon quantum computing - Quantum Zeitgeist - October 7th, 2025 [October 7th, 2025]
- Quantum Computing Stock Could Rise 67%, Says Analyst. Heres Why. - Barron's - October 4th, 2025 [October 4th, 2025]
- Where Will Quantum Computing Inc. Be in 1 Year? - The Motley Fool - October 4th, 2025 [October 4th, 2025]
- Analyzing the Sharp Rise of Quantum Computing Inc. - StocksToTrade - October 4th, 2025 [October 4th, 2025]
- QUDORA closes a Strategic Partnership with Kensho to Accelerate Quantum Computing Commercialization in Taiwan - Quantum Zeitgeist - October 4th, 2025 [October 4th, 2025]
- Quantum Computing Inc. Stock (QUBT) Opinions on Recent Stock Offering and Analyst Upgrade - Quiver Quantitative - October 4th, 2025 [October 4th, 2025]
- How Quantum Computings Biggest Challenges Are Being Solved With Accelerated Computing - NVIDIA Blog - October 2nd, 2025 [October 2nd, 2025]
- Here's the Quantum Computing Stock Wall Street Loves the Most (Hint: It's Not IonQ or Rigetti) - Yahoo Finance - October 2nd, 2025 [October 2nd, 2025]
- D-Wave to Participate in Quantum Beach Conference, Highlighting Companys Leadership in the Commercialization of Quantum Computing - Yahoo Finance - October 2nd, 2025 [October 2nd, 2025]
- Quantum computing could have a major impact on investing - Business Insider - October 2nd, 2025 [October 2nd, 2025]
- Here's the Quantum Computing Stock Wall Street Loves the Most (Hint: It's Not IonQ or Rigetti) - The Motley Fool - October 2nd, 2025 [October 2nd, 2025]
- IBM and Vanguard Team Up to Build Investment Portfolios with Quantum Computing - TipRanks - October 2nd, 2025 [October 2nd, 2025]
- Connecticut to Invest $10 Million in QuantumCT for Quantum Infrastructure and Testbed Deployment - Quantum Computing Report - October 2nd, 2025 [October 2nd, 2025]
- Odra Quantum Computing School Debuts in Poland with Intensive Training and Hackathon - HPCwire - October 2nd, 2025 [October 2nd, 2025]
- Billionaires Are Piling Into a Quantum Computing Stock That Gained Over 3,700% in the Past Year - The Motley Fool - October 2nd, 2025 [October 2nd, 2025]
- Introducing CHPX: The Case For AI Semiconductors And Quantum Computing - Seeking Alpha - October 2nd, 2025 [October 2nd, 2025]
- Quantum Computing Meets Aerospace: D-Wave CEO to Reveal Real-World Optimization Solutions at Quantum Beach - Stock Titan - October 2nd, 2025 [October 2nd, 2025]
- Combination of quantum and classical computing supports early diagnosis of breast cancer - Phys.org - October 2nd, 2025 [October 2nd, 2025]
- Quantum computing to unlock over $50 billion in value across key industries, says BCG - Economy Middle East - October 2nd, 2025 [October 2nd, 2025]