Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges – Nature.com

Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179186 (2015).

Article ADS CAS PubMed Google Scholar

Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

Article ADS MathSciNet CAS Google Scholar

Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 10771088 (2017).

Article ADS CAS PubMed Google Scholar

Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Ann. Rev. Condens. Matter Phys. 10, 387408 (2019).

Article ADS Google Scholar

Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).

Ors, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 349, 117158 (2014).

Article ADS MathSciNet Google Scholar

Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602606 (2017).

Article ADS MathSciNet CAS PubMed Google Scholar

Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

Article ADS MathSciNet CAS Google Scholar

Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 11, 124130 (2015).

Article CAS Google Scholar

Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601604 (2017).

Article ADS CAS PubMed PubMed Central Google Scholar

Joshi, L. K. et al. Probing many-body quantum chaos with quantum simulators. Phys. Rev. X 12, 011018 (2022).

CAS Google Scholar

Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579584 (2017).

Article ADS CAS PubMed Google Scholar

Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 9951001 (2017).

Article ADS CAS PubMed Google Scholar

Bloch, I., Dalibard, J. & Nascimbne, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267276 (2012).

Article CAS Google Scholar

Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277284 (2012).

Article CAS Google Scholar

Houck, A. A., Treci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292299 (2012).

Article CAS Google Scholar

Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285291 (2012).

Article CAS Google Scholar

Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 12421247 (2021).

Article ADS CAS PubMed Google Scholar

Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467488 (1982).

Article MathSciNet Google Scholar

Lloyd, S. Universal quantum simulators. Science 273, 10731078 (1996).

Article ADS MathSciNet CAS PubMed Google Scholar

Bermejo-Vega, J., Hangleiter, D., Schwarz, M., Raussendorf, R. & Eisert, J. Architectures for quantum simulation showing a quantum speedup. Phys. Rev. X 8, 021010 (2018).

CAS Google Scholar

Henriet, L. et al. Quantum computing with neutral atoms. Quantum 4, 327 (2020).

Article Google Scholar

Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457462 (2022).

Article ADS CAS PubMed Google Scholar

Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451456 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Bruzewicz, C. D., Chiaverini, J., McConnell, R. & Sage, J. M. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 021314 (2019).

Article ADS Google Scholar

Lanyon, B. P. et al. Universal digital quantum simulation with trapped ions. Science 334, 5761 (2011).

Article ADS CAS PubMed Google Scholar

Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181184 (2011).

Article ADS CAS PubMed Google Scholar

Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 40914094 (1995).

Article ADS CAS PubMed Google Scholar

Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 47144717 (1995).

Article ADS MathSciNet CAS PubMed Google Scholar

Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

Article ADS Google Scholar

Kjaergaard, M. et al. Superconducting qubits: Current state of play. Ann. Rev. Condens. Matter Phys. 11, 369395 (2020).

Article ADS Google Scholar

Krantz, P. et al. A quantum engineers guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

Article ADS Google Scholar

Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 10311042 (2008).

Article ADS CAS PubMed Google Scholar

Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 4652 (2001).

Article ADS CAS PubMed Google Scholar

Flamini, F., Spagnolo, N. & Sciarrino, F. Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001 (2018).

Article ADS PubMed Google Scholar

Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 51885191 (2001).

Article ADS CAS PubMed Google Scholar

Raussendorf, R., Harrington, J. & Goyal, K. A fault-tolerant one-way quantum computer. Ann. Phys. 321, 22422270 (2006).

Article ADS MathSciNet CAS Google Scholar

Barz, S. Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments. J. Phys. B: At. Mol. Opt. Phys. 48, 083001 (2015).

Article ADS Google Scholar

Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

CAS Google Scholar

West, A. et al. Gate-based single-shot readout of spins in silicon. Nat. Nanotechnol. 14, 437441 (2019).

Article ADS CAS PubMed Google Scholar

Yang, C. H. et al. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nat. Electron. 2, 151158 (2019).

Article Google Scholar

Wang, X. et al. Experimental realization of an extended fermi-Hubbard model using a 2d lattice of dopant-based quantum dots. Nat. Commun. 13, 6824 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Wang, C.-A. et al. Probing resonating valence bonds on a programmable germanium quantum simulator. npj Quant. Inf. 9, 58 (2023).

Article ADS Google Scholar

van Diepen, C. J. et al. Quantum simulation of antiferromagnetic Heisenberg chain with gate-defined quantum dots. Phys. Rev. X 11, 041025 (2021).

Google Scholar

Kiczynski, M. et al. Engineering topological states in atom-based semiconductor quantum dots. Nature 606, 694699 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Klimov, A. B., Guzmn, R., Retamal, J. C. & Saavedra, C. Qutrit quantum computer with trapped ions. Phys. Rev. A 67, 062313 (2003).

Article ADS Google Scholar

Ringbauer, M. et al. A universal qudit quantum processor with trapped ions. Nat. Phys. 18, 10531057 (2022).

Article CAS Google Scholar

Chi, Y. et al. A programmable qudit-based quantum processor. Nat. Commun. 13, 1166 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Neeley, M. et al. Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722725 (2009).

Article ADS CAS PubMed Google Scholar

Morvan, A. et al. Qutrit randomized benchmarking. Phys. Rev. Lett. 126, 210504 (2021).

Article ADS CAS PubMed Google Scholar

Zhu, D. et al. Cross-platform comparison of arbitrary quantum states. Nat. Commun. 13, 6620 (2022).

Read more here:
Quantum many-body simulations on digital quantum computers: State-of-the-art and future challenges - Nature.com

Related Posts

Tags:

Comments are closed.