Quantum expert Robert Sutor explains the basics of Quantum Computing – Packt Hub
What if we could do chemistry inside a computer instead of in a test tube or beaker in the laboratory? What if running a new experiment was as simple as running an app and having it completed in a few seconds?
For this to really work, we would want it to happen with complete fidelity. The atoms and molecules as modeled in the computer should behave exactly like they do in the test tube. The chemical reactions that happen in the physical world would have precise computational analogs. We would need a completely accurate simulation.
If we could do this at scale, we might be able to compute the molecules we want and need.
These might be for new materials for shampoos or even alloys for cars and airplanes. Perhaps we could more efficiently discover medicines that are customized to your exact physiology. Maybe we could get a better insight into how proteins fold, thereby understanding their function, and possibly creating custom enzymes to positively change our body chemistry.
Is this plausible? We have massive supercomputers that can run all kinds of simulations. Can we model molecules in the above ways today?
This article is an excerpt from the book Dancing with Qubits written by Robert Sutor. Robert helps you understand how quantum computing works and delves into the math behind it with this quantum computing textbook.
Lets start with C8H10N4O2 1,3,7-Trimethylxanthine.
This is a very fancy name for a molecule that millions of people around the world enjoy every day: caffeine. An 8-ounce cup of coffee contains approximately 95 mg of caffeine, and this translates to roughly 2.95 10^20 molecules. Written out, this is
295, 000, 000, 000, 000, 000, 000 molecules.
A 12 ounce can of a popular cola drink has 32 mg of caffeine, the diet version has 42 mg, and energy drinks often have about 77 mg.
These numbers are large because we are counting physical objects in our universe, which we know is very big. Scientists estimate, for example, that there are between 10^49 and 10^50 atoms in our planet alone.
To put these values in context, one thousand = 10^3, one million = 10^6, one billion = 10^9, and so on. A gigabyte of storage is one billion bytes, and a terabyte is 10^12 bytes.
Getting back to the question I posed at the beginning of this section, can we model caffeine exactly on a computer? We dont have to model the huge number of caffeine molecules in a cup of coffee, but can we fully represent a single molecule at a single instant?
Caffeine is a small molecule and contains protons, neutrons, and electrons. In particular, if we just look at the energy configuration that determines the structure of the molecule and the bonds that hold it all together, the amount of information to describe this is staggering. In particular, the number of bits, the 0s and 1s, needed is approximately 10^48:
10, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000.
And this is just one molecule! Yet somehow nature manages to deal quite effectively with all this information. It handles the single caffeine molecule, to all those in your coffee, tea, or soft drink, to every other molecule that makes up you and the world around you.
How does it do this? We dont know! Of course, there are theories and these live at the intersection of physics and philosophy. However, we do not need to understand it fully to try to harness its capabilities.
We have no hope of providing enough traditional storage to hold this much information. Our dream of exact representation appears to be dashed. This is what Richard Feynman meant in his quote: Nature isnt classical.
However, 160 qubits (quantum bits) could hold 2^160 1.46 10^48 bits while the qubits were involved in a computation. To be clear, Im not saying how we would get all the data into those qubits and Im also not saying how many more we would need to do something interesting with the information. It does give us hope, however.
In the classical case, we will never fully represent the caffeine molecule. In the future, with enough very high-quality qubits in a powerful quantum computing system, we may be able to perform chemistry on a computer.
I can write a little app on a classical computer that can simulate a coin flip. This might be for my phone or laptop.
Instead of heads or tails, lets use 1 and 0. The routine, which I call R, starts with one of those values and randomly returns one or the other. That is, 50% of the time it returns 1 and 50% of the time it returns 0. We have no knowledge whatsoever of how R does what it does.
When you see R, think random. This is called a fair flip. It is not weighted to slightly prefer one result over the other. Whether we can produce a truly random result on a classical computer is another question. Lets assume our app is fair.
If I apply R to 1, half the time I expect 1 and another half 0. The same is true if I apply R to 0. Ill call these applications R(1) and R(0), respectively.
If I look at the result of R(1) or R(0), there is no way to tell if I started with 1 or 0. This is just like a secret coin flip where I cant tell whether I began with heads or tails just by looking at how the coin has landed. By secret coin flip, I mean that someone else has flipped it and I can see the result, but I have no knowledge of the mechanics of the flip itself or the starting state of the coin.
If R(1) and R(0) are randomly 1 and 0, what happens when I apply R twice?
I write this as R(R(1)) and R(R(0)). Its the same answer: random result with an equal split. The same thing happens no matter how many times we apply R. The result is random, and we cant reverse things to learn the initial value.
There is a catch, though. You are not allowed to look at the result of what H does if you want to reverse its effect. If you apply H to 0 or 1, peek at the result, and apply H again to that, it is the same as if you had used R. If you observe what is going on in the quantum case at the wrong time, you are right back at strictly classical behavior.
To summarize using the coin language: if you flip a quantum coin and then dont look at it, flipping it again will yield heads or tails with which you started. If you do look, you get classical randomness.
A second area where quantum is different is in how we can work with simultaneous values. Your phone or laptop uses bytes as individual units of memory or storage. Thats where we get phrases like megabyte, which means one million bytes of information.
A byte is further broken down into eight bits, which weve seen before. Each bit can be a 0 or 1. Doing the math, each byte can represent 2^8 = 256 different numbers composed of eight 0s or 1s, but it can only hold one value at a time. Eight qubits can represent all 256 values at the same time
This is through superposition, but also through entanglement, the way we can tightly tie together the behavior of two or more qubits. This is what gives us the (literally) exponential growth in the amount of working memory.
Artificial intelligence and one of its subsets, machine learning, are extremely broad collections of data-driven techniques and models. They are used to help find patterns in information, learn from the information, and automatically perform more intelligently. They also give humans help and insight that might have been difficult to get otherwise.
Here is a way to start thinking about how quantum computing might be applicable to large, complicated, computation-intensive systems of processes such as those found in AI and elsewhere. These three cases are in some sense the small, medium, and large ways quantum computing might complement classical techniques:
As I write this, quantum computers are not big data machines. This means you cannot take millions of records of information and provide them as input to a quantum calculation. Instead, quantum may be able to help where the number of inputs is modest but the computations blow up as you start examining relationships or dependencies in the data.
In the future, however, quantum computers may be able to input, output, and process much more data. Even if it is just theoretical now, it makes sense to ask if there are quantum algorithms that can be useful in AI someday.
To summarize, we explored how quantum computing works and different applications of artificial intelligence in quantum computing.
Get this quantum computing book Dancing with Qubits by Robert Sutor today where he has explored the inner workings of quantum computing. The book entails some sophisticated mathematical exposition and is therefore best suited for those with a healthy interest in mathematics, physics, engineering, and computer science.
Intel introduces cryogenic control chip, Horse Ridge for commercially viable quantum computing
Microsoft announces Azure Quantum, an open cloud ecosystem to learn and build scalable quantum solutions
Amazon re:Invent 2019 Day One: AWS launches Braket, its new quantum service and releases
See the original post:
Quantum expert Robert Sutor explains the basics of Quantum Computing - Packt Hub
- Want to Invest in Quantum Computing? These 3 Stocks Are Great Buys Right Now. - The Motley Fool - January 11th, 2026 [January 11th, 2026]
- A $550 Million Reason to Buy This Quantum Computing Stock Now - Barchart.com - January 11th, 2026 [January 11th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Barchart.com - January 11th, 2026 [January 11th, 2026]
- Want to invest in quantum computing? These 3 stocks are great buys right now. - MSN - January 11th, 2026 [January 11th, 2026]
- Assessing Rigetti Computing (RGTI) Valuation As Quantum Hype Builds Around Conferences And Hardware Updates - Yahoo Finance - January 11th, 2026 [January 11th, 2026]
- QuEra Computing Highlights Investor Perspective on Quantum Metrics and Architectures - TipRanks - January 11th, 2026 [January 11th, 2026]
- Beyond the Hype: 5 Reasons Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Can Crash in 2026 - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Coinbase Exec Warns Quantum Computing Threatens 33% of Bitcoin Supply Heres Why - Yahoo Finance - January 9th, 2026 [January 9th, 2026]
- Senators Introduce Bipartisan National Quantum Initiative Reauthorization Act of 2026 - Quantum Computing Report - January 9th, 2026 [January 9th, 2026]
- 3 Quantum Computing Stocks with Potential to Beat the Market 1/9/2026 - TipRanks - January 9th, 2026 [January 9th, 2026]
- Quantum Computing Market Is Projected To Grow USD 14.19 Billion by 2035, Reaching at a CAGR of 27.04% - openPR.com - January 9th, 2026 [January 9th, 2026]
- CEO reveals two main problems with scaling quantum computing to commercial use - Fox Business - January 9th, 2026 [January 9th, 2026]
- Quantum Computing Stocks Off To Good Start In 2026. But Fasten Your Seat Belts. - Investor's Business Daily - January 8th, 2026 [January 8th, 2026]
- Prediction: These 4 Quantum Computing Stocks Will Skyrocket in 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- Quantum Computing Stocks: D-Wave To Acquire Quantum Circuits In $550M Deal - Investor's Business Daily - January 8th, 2026 [January 8th, 2026]
- Error-correction technology to turn quantum computing into real-world power - Phys.org - January 8th, 2026 [January 8th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - Nasdaq - January 8th, 2026 [January 8th, 2026]
- Quantum computing momentum grows: D-Wave announces first major breakthrough of 2026 - Fast Company - January 8th, 2026 [January 8th, 2026]
- Quantum Computing News: D-Wave Moves Into Gate-Based Systems as Funding and Global Expansion Pick Up - TipRanks - January 8th, 2026 [January 8th, 2026]
- Quantum Computing: What Investors Need to Know - Morningstar - January 8th, 2026 [January 8th, 2026]
- Breakthrough in Quantum Computing: First Secure Method to Back Up Quantum Information - Sci.News - January 8th, 2026 [January 8th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- The Bloch Quantum Advances to Final Stage of Department of Defense Tech Hubs Competition - Quantum Computing Report - January 8th, 2026 [January 8th, 2026]
- Are Quantum Computing ETFs the Safest Bet for 10-Year Growth? - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- Better Quantum Stock: D-Wave Quantum vs. Quantum Computing Inc. - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- RIKEN Leads Hybrid Computing Effort Connecting Quantum Computers and Supercomputers - HPCwire - January 8th, 2026 [January 8th, 2026]
- D-Wave to acquire Quantum Circuits in bid to become worlds leading quantum computing firm - SiliconANGLE - January 8th, 2026 [January 8th, 2026]
- D-Wave (QBTS) to Bring Commercial Quantum Computing to CES 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- 7 Quantum Computing Trends That Will Shape Every Industry In 2026 - Bernard Marr - January 8th, 2026 [January 8th, 2026]
- SQMS Center team from Fermilab and NYU Langone advance in NIH Quantum Computing Challenge - Fermilab (.gov) - January 8th, 2026 [January 8th, 2026]
- Quantum Computing: Nothing To Be Excited About (NASDAQ:QUBT) - Seeking Alpha - January 8th, 2026 [January 8th, 2026]
- Every Quantum Computing Stock Will Crash. Heres Why! - Nanalyze - January 8th, 2026 [January 8th, 2026]
- 3 top quantum computing stocks to buy in 2026 - MSN - January 8th, 2026 [January 8th, 2026]
- Prediction: Where Quantum Computing Inc. Will Be in 3 Years - The Motley Fool - January 4th, 2026 [January 4th, 2026]
- Advancing single-cell omics and cell-based therapeutics with quantum computing - Nature - January 2nd, 2026 [January 2nd, 2026]
- Meet the Cornerstone Quantum Computing Stock Billionaires Have Piled Into for 2026 (Hint: It's Not IonQ, Rigetti Computing, or D-Wave Quantum) - The... - January 2nd, 2026 [January 2nd, 2026]
- What flying cars, quantum computing and fusion have in common - The Economist - January 2nd, 2026 [January 2nd, 2026]
- Meet the Cornerstone Quantum Computing Stock Billionaires Have Piled Into for 2026 (Hint: It's Not IonQ, Rigetti Computing, or D-Wave Quantum) - Yahoo... - January 2nd, 2026 [January 2nd, 2026]
- Quantum Computing Boosts Single-Cell Omics and Therapies - Bioengineer.org - January 2nd, 2026 [January 2nd, 2026]
- IonQ vs. D-Wave: Which Quantum Computing Stock Will Outperform in 2026? - The Motley Fool - January 2nd, 2026 [January 2nd, 2026]
- Manifold Markets' 2026 Quantum Computing Predictions: Industry Heads Into 2026 With Hype Tempered by Reality - The Quantum Insider - January 2nd, 2026 [January 2nd, 2026]
- What Is One of the Best Quantum Computing Stocks to Own for the Next 10 Years? - The Motley Fool - January 2nd, 2026 [January 2nd, 2026]
- Quantum Computing And Other Bitcoin Themes To Follow In 2026 - Forbes - January 2nd, 2026 [January 2nd, 2026]
- Distributed Quantum Computing Achieves 90% Teleportation with Adaptive Resource Orchestration across 128 QPUs - Quantum Zeitgeist - January 2nd, 2026 [January 2nd, 2026]
- What is one of the best quantum computing stocks to own for the next 10 years? - MSN - January 2nd, 2026 [January 2nd, 2026]
- Quantum computing: Shaping humanitys future beyond limits - The Jerusalem Post - January 2nd, 2026 [January 2nd, 2026]
- Prediction: This Stock Will Be the Biggest Quantum Computing Winner of 2026 - The Motley Fool - December 27th, 2025 [December 27th, 2025]
- When will quantum computing deliver on its promise? - NPR - December 27th, 2025 [December 27th, 2025]
- This tiny chip could change the future of quantum computing - ScienceDaily - December 27th, 2025 [December 27th, 2025]
- QBTS or IONQ: Which Quantum Computing Stock Will Lead in 2026? - Zacks Investment Research - December 27th, 2025 [December 27th, 2025]
- Quantum Computing Stocks on Dec. 25, 2025: Latest News, Analyst Forecasts and 2026 Outlook for IonQ, D-Wave, Rigetti and QUBT - ts2.tech - December 27th, 2025 [December 27th, 2025]
- 3 Genius Quantum Computing Stocks to Buy for 2026 - The Motley Fool - December 27th, 2025 [December 27th, 2025]
- Quantum Computing Stocks To Keep An Eye On - December 27th - MarketBeat - December 27th, 2025 [December 27th, 2025]
- Quantum Computing Stocks Pull Back Into the Weekend: IonQ, D-Wave, Rigetti and QUBT Slide as Investors Size Up 2026 Catalysts - ts2.tech - December 27th, 2025 [December 27th, 2025]
- Opinion: Quantum computing is the stock markets next big tech play and these stocks are still cheap - MarketWatch - December 27th, 2025 [December 27th, 2025]
- Emerge's 2025 Tech Trend of The Year: Quantum Computing Stopped Being Background Noise - Yahoo! Tech - December 27th, 2025 [December 27th, 2025]
- What Is the Smartest Quantum Computing Stock to Buy in 2026? - The Motley Fool - December 27th, 2025 [December 27th, 2025]
- Prediction: This stock will be the biggest quantum computing winner of 2026 - MSN - December 27th, 2025 [December 27th, 2025]
- Forget Rigetti Computing: This Quantum Stock Offers a Far Better RiskReward Right Now - The Motley Fool - December 27th, 2025 [December 27th, 2025]
- What Is the Smartest Quantum Computing Stock to Buy in 2026? - Yahoo Finance - December 27th, 2025 [December 27th, 2025]
- Will Quantum Computing Inc. (QUBT) Stock Keep Its Losing Streak Going in 2026? - The Motley Fool - December 27th, 2025 [December 27th, 2025]
- Rigetti Computing (RGTI) Stock News: Year-End Volatility, Quantum Roadmap Catalysts, and What to Watch Before Mondays Open - ts2.tech - December 27th, 2025 [December 27th, 2025]
- Chinese team hits quantum computing error-correction milestone - Tech in Asia - December 27th, 2025 [December 27th, 2025]
- Rigetti Computing (RGTI) Stock Slides in Holiday Trading as Quantum Rally Cools Latest Price, News, Analyst Targets, and What to Watch - ts2.tech - December 27th, 2025 [December 27th, 2025]
- Tech Will Deliver In 2026: AI, Quantum Computing To Propel Stocks Higher - Seeking Alpha - December 25th, 2025 [December 25th, 2025]
- Quantum computing stocks soar, then fall, in holiday week trading. What's up with D-Wave, Rigetti, and IonQ? - Fast Company - December 25th, 2025 [December 25th, 2025]
- Scalable Quantum Computing Advances With 2,400 Ytterbium Atoms And 83.5% Loading - Quantum Zeitgeist - December 25th, 2025 [December 25th, 2025]
- $7.7 Billion of Warren Buffett's Berkshire Hathaway Portfolio Is Invested in 2 Quantum Computing Stocks - Yahoo Finance - December 25th, 2025 [December 25th, 2025]
- CESGA to Deploy 54-Qubit IQM Radiance in Spains First Quantum-HPC Integration - Quantum Computing Report - December 25th, 2025 [December 25th, 2025]
- Quantum Computing Enables Cyber Threat Detection With Enhanced 4-Qubit Performance - Quantum Zeitgeist - December 25th, 2025 [December 25th, 2025]
- Quantum Computing Inc (QUBT) Stock: Latest News, Forecasts, and Analysis (Dec 24, 2025) - ts2.tech - December 25th, 2025 [December 25th, 2025]
- Dan Ives Thinks Trump Will Invest in This Quantum Computing Stock in 2026. Should You Buy It First? - Yahoo Finance - December 25th, 2025 [December 25th, 2025]
- Deepquantum Achieves Closed-Loop Integration Of Three Quantum Computing Paradigms - Quantum Zeitgeist - December 25th, 2025 [December 25th, 2025]
- IQM and Telefnica picked for quantum computing job in Spain - Telecoms - December 25th, 2025 [December 25th, 2025]
- Wall Street Discovered Quantum Computing Stocks In 2025. Will The Love Last? - Investor's Business Daily - December 22nd, 2025 [December 22nd, 2025]
- Scientists build 'most accurate' quantum computing chip ever thanks to new silicon-based computing architecture - Live Science - December 22nd, 2025 [December 22nd, 2025]
- Why D-Wave Quantum Computing Stock Popped Today - Nasdaq - December 22nd, 2025 [December 22nd, 2025]
- VC Firm Offers Insight Into How Investors Are Reassessing Quantum Computing - The Quantum Insider - December 22nd, 2025 [December 22nd, 2025]