Quantum expert Robert Sutor explains the basics of Quantum Computing – Packt Hub
What if we could do chemistry inside a computer instead of in a test tube or beaker in the laboratory? What if running a new experiment was as simple as running an app and having it completed in a few seconds?
For this to really work, we would want it to happen with complete fidelity. The atoms and molecules as modeled in the computer should behave exactly like they do in the test tube. The chemical reactions that happen in the physical world would have precise computational analogs. We would need a completely accurate simulation.
If we could do this at scale, we might be able to compute the molecules we want and need.
These might be for new materials for shampoos or even alloys for cars and airplanes. Perhaps we could more efficiently discover medicines that are customized to your exact physiology. Maybe we could get a better insight into how proteins fold, thereby understanding their function, and possibly creating custom enzymes to positively change our body chemistry.
Is this plausible? We have massive supercomputers that can run all kinds of simulations. Can we model molecules in the above ways today?
This article is an excerpt from the book Dancing with Qubits written by Robert Sutor. Robert helps you understand how quantum computing works and delves into the math behind it with this quantum computing textbook.
Lets start with C8H10N4O2 1,3,7-Trimethylxanthine.
This is a very fancy name for a molecule that millions of people around the world enjoy every day: caffeine. An 8-ounce cup of coffee contains approximately 95 mg of caffeine, and this translates to roughly 2.95 10^20 molecules. Written out, this is
295, 000, 000, 000, 000, 000, 000 molecules.
A 12 ounce can of a popular cola drink has 32 mg of caffeine, the diet version has 42 mg, and energy drinks often have about 77 mg.
These numbers are large because we are counting physical objects in our universe, which we know is very big. Scientists estimate, for example, that there are between 10^49 and 10^50 atoms in our planet alone.
To put these values in context, one thousand = 10^3, one million = 10^6, one billion = 10^9, and so on. A gigabyte of storage is one billion bytes, and a terabyte is 10^12 bytes.
Getting back to the question I posed at the beginning of this section, can we model caffeine exactly on a computer? We dont have to model the huge number of caffeine molecules in a cup of coffee, but can we fully represent a single molecule at a single instant?
Caffeine is a small molecule and contains protons, neutrons, and electrons. In particular, if we just look at the energy configuration that determines the structure of the molecule and the bonds that hold it all together, the amount of information to describe this is staggering. In particular, the number of bits, the 0s and 1s, needed is approximately 10^48:
10, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000.
And this is just one molecule! Yet somehow nature manages to deal quite effectively with all this information. It handles the single caffeine molecule, to all those in your coffee, tea, or soft drink, to every other molecule that makes up you and the world around you.
How does it do this? We dont know! Of course, there are theories and these live at the intersection of physics and philosophy. However, we do not need to understand it fully to try to harness its capabilities.
We have no hope of providing enough traditional storage to hold this much information. Our dream of exact representation appears to be dashed. This is what Richard Feynman meant in his quote: Nature isnt classical.
However, 160 qubits (quantum bits) could hold 2^160 1.46 10^48 bits while the qubits were involved in a computation. To be clear, Im not saying how we would get all the data into those qubits and Im also not saying how many more we would need to do something interesting with the information. It does give us hope, however.
In the classical case, we will never fully represent the caffeine molecule. In the future, with enough very high-quality qubits in a powerful quantum computing system, we may be able to perform chemistry on a computer.
I can write a little app on a classical computer that can simulate a coin flip. This might be for my phone or laptop.
Instead of heads or tails, lets use 1 and 0. The routine, which I call R, starts with one of those values and randomly returns one or the other. That is, 50% of the time it returns 1 and 50% of the time it returns 0. We have no knowledge whatsoever of how R does what it does.
When you see R, think random. This is called a fair flip. It is not weighted to slightly prefer one result over the other. Whether we can produce a truly random result on a classical computer is another question. Lets assume our app is fair.
If I apply R to 1, half the time I expect 1 and another half 0. The same is true if I apply R to 0. Ill call these applications R(1) and R(0), respectively.
If I look at the result of R(1) or R(0), there is no way to tell if I started with 1 or 0. This is just like a secret coin flip where I cant tell whether I began with heads or tails just by looking at how the coin has landed. By secret coin flip, I mean that someone else has flipped it and I can see the result, but I have no knowledge of the mechanics of the flip itself or the starting state of the coin.
If R(1) and R(0) are randomly 1 and 0, what happens when I apply R twice?
I write this as R(R(1)) and R(R(0)). Its the same answer: random result with an equal split. The same thing happens no matter how many times we apply R. The result is random, and we cant reverse things to learn the initial value.
There is a catch, though. You are not allowed to look at the result of what H does if you want to reverse its effect. If you apply H to 0 or 1, peek at the result, and apply H again to that, it is the same as if you had used R. If you observe what is going on in the quantum case at the wrong time, you are right back at strictly classical behavior.
To summarize using the coin language: if you flip a quantum coin and then dont look at it, flipping it again will yield heads or tails with which you started. If you do look, you get classical randomness.
A second area where quantum is different is in how we can work with simultaneous values. Your phone or laptop uses bytes as individual units of memory or storage. Thats where we get phrases like megabyte, which means one million bytes of information.
A byte is further broken down into eight bits, which weve seen before. Each bit can be a 0 or 1. Doing the math, each byte can represent 2^8 = 256 different numbers composed of eight 0s or 1s, but it can only hold one value at a time. Eight qubits can represent all 256 values at the same time
This is through superposition, but also through entanglement, the way we can tightly tie together the behavior of two or more qubits. This is what gives us the (literally) exponential growth in the amount of working memory.
Artificial intelligence and one of its subsets, machine learning, are extremely broad collections of data-driven techniques and models. They are used to help find patterns in information, learn from the information, and automatically perform more intelligently. They also give humans help and insight that might have been difficult to get otherwise.
Here is a way to start thinking about how quantum computing might be applicable to large, complicated, computation-intensive systems of processes such as those found in AI and elsewhere. These three cases are in some sense the small, medium, and large ways quantum computing might complement classical techniques:
As I write this, quantum computers are not big data machines. This means you cannot take millions of records of information and provide them as input to a quantum calculation. Instead, quantum may be able to help where the number of inputs is modest but the computations blow up as you start examining relationships or dependencies in the data.
In the future, however, quantum computers may be able to input, output, and process much more data. Even if it is just theoretical now, it makes sense to ask if there are quantum algorithms that can be useful in AI someday.
To summarize, we explored how quantum computing works and different applications of artificial intelligence in quantum computing.
Get this quantum computing book Dancing with Qubits by Robert Sutor today where he has explored the inner workings of quantum computing. The book entails some sophisticated mathematical exposition and is therefore best suited for those with a healthy interest in mathematics, physics, engineering, and computer science.
Intel introduces cryogenic control chip, Horse Ridge for commercially viable quantum computing
Microsoft announces Azure Quantum, an open cloud ecosystem to learn and build scalable quantum solutions
Amazon re:Invent 2019 Day One: AWS launches Braket, its new quantum service and releases
See the original post:
Quantum expert Robert Sutor explains the basics of Quantum Computing - Packt Hub
- The Smartest Way to Play Quantum Computing May Already Be in Your Portfolio - The Motley Fool - June 24th, 2025 [June 24th, 2025]
- Quantum Computing News: New Roadmaps, Real Timelines, and Rising Stocks - TipRanks - June 24th, 2025 [June 24th, 2025]
- Will Quantum Computing Stocks Soar in the Second Half? - The Motley Fool - June 24th, 2025 [June 24th, 2025]
- 2 Quantum Computing Stocks That Could Become Monsters - The Motley Fool - June 24th, 2025 [June 24th, 2025]
- UK Government Commits 670 Million ($908.6 Million USD) Over 10 Years to Advance Quantum Computing Capabilities - Quantum Computing Report - June 24th, 2025 [June 24th, 2025]
- Is Quantum Computing (QUBT) Stock a Buy on This Bold Technological Breakthrough? - Yahoo Finance - June 24th, 2025 [June 24th, 2025]
- 2 Top Quantum Computing Stocks to Buy in 2025 - Yahoo Finance - June 24th, 2025 [June 24th, 2025]
- UK Commits 500 Million to Quantum Computing Amid Sovereignty And Security Concerns - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Can Investing $10,000 in Quantum Computing (QUBT) Stock Turn Into $1 Million by 2035? - The Motley Fool - June 24th, 2025 [June 24th, 2025]
- SEALSQ, ColibriTD, and Xdigit Announce Plan to Develop a Breakthrough Quantum Computing Based Solution Set to Revolutionize Semiconductor Wafer Yields... - June 24th, 2025 [June 24th, 2025]
- Why Quantum Computing Stock Is Plummeting Today - The Globe and Mail - June 24th, 2025 [June 24th, 2025]
- AdvanThink and Quandela Partner to Explore Quantum AI for Payment Fraud Detection - Quantum Computing Report - June 22nd, 2025 [June 22nd, 2025]
- Fleet Space Advances Quantum-Enhanced Mineral Exploration with New Partnerships - Quantum Computing Report - June 22nd, 2025 [June 22nd, 2025]
- How Will Bitcoin Defend Against Quantum Computing? This Project Just Raised $6M - Decrypt - June 20th, 2025 [June 20th, 2025]
- Why IBM Is the Best Quantum Computing Stock to Buy Right Now - Yahoo Finance - June 20th, 2025 [June 20th, 2025]
- QUBT Stock Is Up 80% In A Month. Whats Happening With Quantum Computing? - Forbes - June 20th, 2025 [June 20th, 2025]
- Microsofts 4D Quantum Codes Promise Reduction in Error Rates, Boost in Prospects of Fault-Tolerant Computing - The Quantum Insider - June 20th, 2025 [June 20th, 2025]
- Escaping dead zones in the "barren plateau" of quantum computing - Earth.com - June 20th, 2025 [June 20th, 2025]
- Quantum Computing (NASDAQ:QUBT) Trading Down 3.5% - Here's What Happened - MarketBeat - June 20th, 2025 [June 20th, 2025]
- Tracking IBM Progress in Quantum Computing and Error Correction - oodaloop.com - June 20th, 2025 [June 20th, 2025]
- Quantum Computing Looks Overvalued And Needs To Deliver Before I Rate It A Buy (QUBT) - Seeking Alpha - June 20th, 2025 [June 20th, 2025]
- Buy the Dip on This Quantum Computing Stock - Schaeffer's Investment Research - June 20th, 2025 [June 20th, 2025]
- Want Exposure to AI, Quantum Computing, and Robotics? This Vanguard ETF Has It All. - The Motley Fool - June 18th, 2025 [June 18th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - Yahoo Finance - June 18th, 2025 [June 18th, 2025]
- D-Wave Puts Down Roots in South Korea in Push for Global Adoption of Quantum Computing - Barron's - June 18th, 2025 [June 18th, 2025]
- Useful quantum computing is already here - The Times - June 18th, 2025 [June 18th, 2025]
- D-Wave, Yonsei University, and Incheon City join forces to expand quantum computing in South Korea - EdTech Innovation Hub - June 18th, 2025 [June 18th, 2025]
- Quantum Computing: All The Right Moves For Takeoff - Seeking Alpha - June 18th, 2025 [June 18th, 2025]
- 3 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - June 18th, 2025 [June 18th, 2025]
- D-Wave Signs MOU with Yonsei University and Incheon for Onsite Advantage2 System and Quantum Collaboration - Quantum Computing Report - June 18th, 2025 [June 18th, 2025]
- Best Quantum Computing Stocks To Add to Your Watchlist - June 17th - MarketBeat - June 18th, 2025 [June 18th, 2025]
- Infleqtion Ships Large Neutral Atom System with Up to 500 Qubits to the Institute for Molecular Science in Japan - Quantum Computing Report - June 18th, 2025 [June 18th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - Yahoo Finance - June 14th, 2025 [June 14th, 2025]
- How to capitalize on the red-hot quantum computing space, according to a veteran investor - CNBC - June 14th, 2025 [June 14th, 2025]
- Quantum Computing Stock Jumped 25% on WednesdayThese Are the Key Price Levels to Watch - Investopedia - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- Why Quantum Computing Stock Is Skyrocketing This Week - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- eleQtron and FMD Partner to Advance Scalable Quantum Chip Production in Europe - Quantum Computing Report - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - The Globe and Mail - June 14th, 2025 [June 14th, 2025]
- Why IONQ, RGTI and QBTS are Worth the Risk in Quantum Computing - TipRanks - June 14th, 2025 [June 14th, 2025]
- If I Could Own Only 1 Quantum Computing Stock, This Would Be It - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- Senior Thesis Spotlight: A high-risk, but well-defined idea to advance quantum computing - Princeton University - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - MSN - June 14th, 2025 [June 14th, 2025]
- IonQ to buy Oxford Ionics for $1.08 billion to expand quantum computing research - Reuters - June 14th, 2025 [June 14th, 2025]
- IBM claims 'real world' edge in quantum computing race - Phys.org - June 14th, 2025 [June 14th, 2025]
- IonQ Announces Agreement to Acquire Oxford Ionics, Accelerating Path to Pioneering Breakthroughs in Quantum Computing - Business Wire - June 14th, 2025 [June 14th, 2025]
- Why Quantum Computing Stock Is Skyrocketing This Week - AOL.com - June 14th, 2025 [June 14th, 2025]
- Quantum-Computing Company with Bothell Site Announces Deal That Will 'Set a New Standard - 425business.com - June 14th, 2025 [June 14th, 2025]
- Quantum computing creates the fog and the lighthouse - cio.com - June 14th, 2025 [June 14th, 2025]
- The Quantum Computing Threat to Bitcoin Is Real -- and Coming Fast - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- IBM just took a 'significant' step toward useful quantum computing - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- Is D-Wave Quantum a Better Quantum Computing Stock to Buy Than IonQ? - The Motley Fool - June 10th, 2025 [June 10th, 2025]
- IonQ buys UK quantum startup Oxford Ionics for more than $1 billion - CNBC - June 10th, 2025 [June 10th, 2025]
- The 2025 Tech Power Players in the quantum computing sector - The Boston Globe - June 10th, 2025 [June 10th, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 6/9/2025 - TipRanks - June 10th, 2025 [June 10th, 2025]
- Quantum Computing and its Impact on the Life Science Industry - Inside Global Tech - June 10th, 2025 [June 10th, 2025]
- IBM bets on novel error-correction for scalable quantum computing - Nextgov - June 10th, 2025 [June 10th, 2025]
- Vodafone Partners With ORCA Computing to Model Future Networks in Minutes Using Quantum technology - The Quantum Insider - June 10th, 2025 [June 10th, 2025]
- Vodafone Partners With ORCA Computing to Model Future Networks in Minutes Using Quantum Technology - Business Wire - June 10th, 2025 [June 10th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - June 10th, 2025 [June 10th, 2025]
- Should You Invest in Quantum Computing Stocks During the TACO Trade? - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- Quantum Computing: Journey from bits to qubits still has far to go - The Indian Express - June 10th, 2025 [June 10th, 2025]
- Quantum Computing Breakthrough: BTQ and QPerfect Join Forces to Create Unhackable Digital Transactions - Stock Titan - June 10th, 2025 [June 10th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - MSN - June 10th, 2025 [June 10th, 2025]
- British quantum computing start-up spun out of Oxford University snapped up by US rival in 800m deal - MSN - June 10th, 2025 [June 10th, 2025]
- NVIDIA's quantum computing team forged: alliance between US and Taiwanese companies - TweakTown - June 10th, 2025 [June 10th, 2025]
- IonQ to buy Oxford Ionics for $1.08 billion to expand quantum computing research - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- Will IonQ's Big Move for Quantum Computing Open Door to All-Time High? - TheStreet Pro - June 10th, 2025 [June 10th, 2025]
- Should You Invest in Quantum Computing Stocks During the TACO Trade? - The Motley Fool - June 10th, 2025 [June 10th, 2025]
- D-Wave Quantum Stock Skyrockets on Real-World Computing Breakthroughs - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- 1 Quantum Computing Stock That Has Crushed the S&P 500 Index This Year -- Should Investors Jump Aboard or Run for the Hills? - Yahoo Finance - June 1st, 2025 [June 1st, 2025]
- Lockheed Martin (LMT) and IBM Show the Real-World Potential of Quantum Computing - TipRanks - June 1st, 2025 [June 1st, 2025]
- Analyst flags new quantum computing stocks to buy - TheStreet - June 1st, 2025 [June 1st, 2025]
- Certifying the unpredictable: a key step in quantum computing - anl.gov - June 1st, 2025 [June 1st, 2025]
- Quantum Computing (NASDAQ:QUBT) Trading Down 3.3% - Here's What Happened - MarketBeat - June 1st, 2025 [June 1st, 2025]
- Want to Invest in Quantum Computing? 4 Stocks That Are Great Buys Right Now - Nasdaq - June 1st, 2025 [June 1st, 2025]
- A.I. Drone Operations Flourishing as Global Quantum Computing Market Expected to Reach $5.3 Billion By 2029 - GlobeNewswire - June 1st, 2025 [June 1st, 2025]
- Quantum Computing: Coming to a Marketing Organization Near You - CMSWire.com - June 1st, 2025 [June 1st, 2025]
- 1 Quantum Computing Stock That Has Crushed the S&P 500 Index This Year -- Should Investors Jump Aboard or Run for the Hills? - The Motley Fool - June 1st, 2025 [June 1st, 2025]
- The Promise of Quantum Computing - The Motley Fool - June 1st, 2025 [June 1st, 2025]