Large-Scale Simulations Of The Brain May Need To Wait For Quantum Computers – Forbes
Will quantum computer simulations crack open our understanding of the biological brain?
Looking back at the history of computers, its hard to overestimate the rate at which computing power has scaled in the course of just a single human lifetime. But yet, existing classical computers have fundamental limits. If quantum computers are successfully built and eventually fully come online, they will be able to tackle certain classes of problems that elude classical computers. And they may be the computational tool needed to fully understand and simulate the brain.
As of this writing, the fastest supercomputer in the world is Japans Fugaku supercomputer, developed jointly by Riken and Fujitsu. It can perform 442 peta-floating-point operations per second.
Lets break that number down in order to arrive at an intuitive (as much as possible) grasp of what it means.
A floating-point number is a way to express, or write down, a real number - real in a mathematical sense - with a fixed amount of precision. Real numbers are all the continuous numbers from the number line. 5, -23, 7/8, and numbers like pi (3.1415926 ...) that go on forever are all real numbers. The problem is a computer, which is digital, has a hard time internally representing continuous numbers. So one way around this is to specify a limited number of digits, and then specify how big or small the actual number is by some base power. For example, the number 234 can be written as 2.34 x 102, because 2.34 x 100 equals 234. Floating point numbers specify a fixed number of significant digits the computer must store in its memory. It fixes the accuracy of the number. This is important because if you do any mathematical operation (e.g. addition, subtraction, division or multiplication) with the fixed accuracy version of a real number, small errors in your results will be generated that propagate (and can grow) throughout other calculations. But as long as the errors remain small its okay.
A floating point operation then, is any arithmetic operation between two floating-point numbers (abbreviated as FLOP). Computer scientists and engineers use the number of FLOP per second - or FLOPS - as a benchmark to compare the speed and computing power of different computers.
One petaFLOP is equivalent to 1,000,000,000,000,000 - or one quadrillion - mathematical operations. A supercomputer with a computing speed of one petaFLOPS is therefore performing one quadrillion operations per second! The Fugaku supercomputer is 442 times faster than that.
For many types of important scientific and technological problems however, even the fastest supercomputer isnt fast enough. In fact, they never will be. This is because for certain classes of problems, the number of possible combinations of solutions that need to be checked grow so fast, compared to the number of things that need to be ordered, that it becomes essentially impossible to compute and check them all.
Heres a version of a classic example. Say you have a group of people with differing political views, and you want to seat them around a table in order to maximize constructive dialogue while minimizing potential conflict. The rules you decide to use dont matter here, just that some set of rules exist. For example, maybe you always want to seat a moderate between a conservative and a liberal in order to act as a bit of a buffer.
This is what scientists and engineers call an optimization problem. How many possible combinations of seating arrangements are there? Well, if you only have two people, there are only two possible arrangements. One individual on each side of a table, and then the reverse, where the two individuals change seats. But if you have five people, the number of possible combinations jumps to 120. Ten people? Well, now youre looking at 3,628,800 different combinations. And thats just for ten people, or more generally, any ten objects. If you had 100 objects, the number of combinations is so huge that its a number with 158 digits (roughly, 9 x 10157). By comparison, there are only about 1021 stars in the observable universe.
Imagine now if you were trying to do a biophysics simulation of a protein in order to develop a new drug that had millions or billions of individual molecules interacting with each other. The number of possible combinations that would need to be computed and checked far exceed the capability of any computer that exists today. Because of how theyre designed, even the fastest supercomputer is forced to check each combination sequentially - one after another. No matter how fast a classical computer is or can be, given the literally greater than astronomical sizes of the number of combinations, many of these problems would take a practical infinity to solve. It just becomes impossible.
Related, the other problem classical computers face is its impossible to build one with sufficient memory to store each of the combinations, even if all the combinations could be computed.
The details of how a quantum computer and quantum computing algorithms work is well beyond the scope or intent of this article, but we can briefly introduce one of the key ideas in order to understand how they can overcome the combinatorial limitations of classical computers.
Classical computers represent information - all information - as numbers. And all numbers can be represented as absolute binary combinations of 1s and 0s. The 1 and 0 each represent a bit of information, the fundamental unit of classical information. Or put another way, information is represented by combinations of two possible states. For example, the number 24 in binary notation is 11000. The number 13 is 1101. You can also do all arithmetic in binary as well. This is convenient, because physically, at the very heart of classical computers is the transistor, which is just an on-off electrical switch. When its on it encodes a 1, and when its off it encodes a 0. Computers do all their math by combining billions of tiny transistors that very quickly switch back and forth as needed. Yet, as fast as this can occur, it still takes finite amounts of time, and all calculations need to be done in an appropriate ordered sequence. If the number of necessary calculations become big enough, as is the case with the combinatorial problems discussed above, you run into an unfeasible computational wall.
Quantum computers are fundamentally different. They overcome the classical limitations by being able to represent information internally not just as a function of two discrete states, but as a continuous probabilistic mixing of states. This allows quantum bits, or qubits, to have many more possible states they can represent at once, and so many more possible combinations of arrangements of objects at once. Put another way, the state space and computational space that a quantum computer has access too is much larger than that of a classical computer. And because of the wave nature of quantum mechanics and superposition (concepts we will not explore here), the internal mixing and probabilistic representation of states and information eventually converge to one dominant solution that the computer outputs. You cant actually observe that internal mixing, but you can observe the final computed output. In essence, as the number of qubits in the quantum computer increase, you can exponentially do more calculations in parallel.
The key concept here is not that quantum computers will necessarily be able to solve new and exotic classes of problems that classical computers cant - although computer scientists have discovered a theoretical class of problem that only quantum computers can solve - but rather that they will be able to solve classes of problems that are - and always will be - beyond the reach of classical computers.
And this isnt to say that quantum computers will replace classical computers. That is not likely to happen anytime in the foreseeable future. For most classes of computational problems classical computers will still work just fine and probably continue being the tool of choice. But for certain classes of problems, quantum computers will far exceed anything possible today.
Well, it depends on the scale at which the dynamics of the brain is being simulated. For sure, there has been much work within the field of computational neuroscience over many decades successfully carrying out computer simulations of the brain and brain activity. But its important to understand the scale at which any given simulation is done.
The brain is exceedingly structurally and functionally hierarchical - from genes, to molecules, cells, network of cells and networks of brain regions. Any simulation of the brain needs to begin with an appropriate mathematical model, a set of equations that capture the chosen scale being modeled that then specify a set of rules to simulate on a computer. Its like a map of a city. The mapmaker needs to make a decision about the scale of the map - how much detail to include and how much to ignore. Why? Because the structural and computational complexity of the brain is so vast and huge that its impossible given existing classical computers to carry out simulations that cut across the many scales with any significant amount of detail.
Even though a wide range of mathematical models about the molecular and cell biology and physiology exist across this huge structural and computational landscape, it is impossible to simulate with any accuracy because of the sheer size of the combinatorial space this landscape presents. It is the same class of problem as that of optimizing people with different political views around a table. But on a much larger scale.
Once again, it in part depends on how you choose to look at it. There is an exquisite amount of detail and structure to the brain across many scales of organization. Heres a more in depth article on this topic.
But if you just consider the number of cells that make up the brain and the number of connections between them as a proxy for the computational complexity - the combinatorial space - of the brain, then it is staggeringly large. In fact, it defies any intuitive grasp.
The brain is a massive network of densely interconnected cells consisting of about 171 trillion brain cells - 86 billion neurons, the main class of brain cell involved in information processing, and another 85 billion non-neuronal cells. There are approximately 10 quadrillion connections between neurons that is a 1 followed by 16 zeros. And of the 85 billion other non-neuronal cells in the brain, one major type of cell called astrocyte glial cells have the ability to both listen in and modulate neuronal signaling and information processing. Astrocytes form a massive network onto themselves, while also cross-talking with the network of neurons. So the brain actually has two distinct networks of cells. Each carrying out different physiological and communication functions, but at the same time overlapping and interacting with each other.
The computational size of the human brain in numbers.
On top of all that structure, there are billions upon billions upon billions of discrete electrical impulses, called action potentials, that act as messages between connected neurons. Astrocytes, unlike neurons, dont use electrical signals. They rely on a different form of biochemical signaling to communicate with each other and with neurons. So there is an entire other molecularly-based information signaling mechanism at play in the brain.
Somehow, in ways neuroscientists still do not fully understand, the interactions of all these electrical and chemical signals carry out all the computations that produce everything the brain is capable of.
Now pause for a moment, and think about the uncountable number of dynamic and ever changing combinations that the state of the brain can take on given this incredible complexity. Yet, it is this combinatorial space, the computations produced by trillions of signals and billions of cells in a hierarchy of networks, that result in everything your brain is capable of doing, learning, experiencing, and perceiving.
So any computer simulation of the brain is ultimately going to be very limited. At least on a classical computer.
How big and complete are the biggest simulations of the brain done to date? And how much impact have they had on scientists understanding of the brain? The answer critically depends on whats being simulated. In other words, at what scale - or scales - and with how much detail given the myriad of combinatorial processes. There certainly continue to be impressive attempts from various research groups around the world, but the amount of cells and brain being simulated, the level of detail, and the amount of time being simulated remains rather limited. This is why headlines and claims that tout ground-breaking large scale simulations of the brain can be misleading, sometimes resulting in controversy and backlash.
The challenges of doing large multi-scale simulations of the brain are significant. So in the end, the answer to how big and complete are the biggest simulations of the brain done to date and how much impact have they had on scientists understanding of the brain - is not much.
First, by their very nature, given a sufficient number of qubits quantum computers will excel at solving and optimizing very large combinatorial problems. Its an inherent consequence of the physics of quantum mechanics and the design of the computers.
Second, given the sheer size and computational complexity of the human brain, any attempt at a large multi-scale simulation with sufficient detail will have to contend with the combinatorial space of the problem.
Third, how a potential quantum computer neural simulation is set up might be able to take advantage of the physics the brain is subject to. Despite its computational power, the brain is still a physical object, and so physical constraints could be used to design and guide simulation rules (quantum computing algorithms) that are inherently combinatorial and parallelizable, thereby taking advantage of what quantum computers do best.
For example, local rules, such as the computational rules of individual neurons, can be used to calculate aspects of the emergent dynamics of networks of neurons in a decentralized way. Each neuron is doing their own thing and contributing to the larger whole, in this case the functions of the whole brain itself, all acting at the same time, and without realizing what theyre contributing too.
In the end, the goal will be to understand the emergent functions of the brain that give rise to cognitive properties. For example, large scale quantum computer simulations might discover latent (hidden) properties and states that are only observable at the whole brain scale, but not computable without a sufficient level of detail and simulation from the scales below it.
If these simulations and research are successful, one can only speculate about what as of yet unknown brain algorithms remain to be discovered and understood. Its possible that such future discoveries will have a significant impact on related topics such as artificial quantum neural networks, or on specially designed hardware that some day may challenge the boundaries of existing computational systems. For example, just published yesterday, an international team of scientists and engineers announced a computational hardware device composed of a molecular-chemical network capable of energy-efficient rapid reconfigurable states, somewhat similar to the reconfigurable nature of biological neurons.
One final comment regarding quantum computers and the brain: This discussion has focused on the potential use of future quantum computers to carry out simulations of the brain that are not currently possible. While some authors and researchers have proposed that neurons themselves might be tiny quantum computers, that is completely different and unrelated to the material here.
It may be that quantum computers will usher in a new era for neuroscience and the understanding of the brain. It may even be the only real way forward. But as of now, actually building workable quantum computers with sufficient stable qubits that outperform classical computers at even modest tasks remains a work in progress. While a handful of commercial efforts exist and have claimed various degrees of success, many difficult hardware and technological challenges remain. Some experts argue that quantum computers may in the end never be built due to technical reasons. But there is much research across the world both in academic labs and in industry attempting to overcome these engineering challenges. Neuroscientists will just have to be patient a bit longer.
Continue reading here:
Large-Scale Simulations Of The Brain May Need To Wait For Quantum Computers - Forbes
- A Once-in-a-Decade Investment Opportunity: 3 Quantum Computing Stocks to Buy and Hold - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Is Already Hitting BitcoinHeres How - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Investors Are Overlooking a Monumental Headwind With Quantum Computing Stocks IonQ and Rigetti Computing - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- After Rigetti Announced a Quantum Computing Delay, How Should You Play RGTI Stock in January 2026? - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- New insight into light-matter thermalization could advance neutral-atom quantum computing - Phys.org - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Stocks: Separating Hype From Reality in 2026 - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Coinbase launches expert board to assess quantum computing threat to crypto - Fortune - January 22nd, 2026 [January 22nd, 2026]
- How can we scale quantum computing in the most energy-efficient way? - The World Economic Forum - January 22nd, 2026 [January 22nd, 2026]
- Does Quantum Computing (QUBT) Have the Scale to Turn Photonics Deals into Durable Revenue? - simplywall.st - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Is Already Hitting BitcoinHeres How - BeInCrypto - January 22nd, 2026 [January 22nd, 2026]
- 2 Top Quantum Computing Stocks to Buy in January - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Quantum computing firm dangles $22,500 Bitcoin prize all you have to do is uncover a private key hidden inside a quantum-optimized problem - Tom's... - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Achieves Database Optimisation with Sub-5 Second Runtime Performance - Quantum Zeitgeist - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing (NASDAQ:QUBT) Trading Down 6.2% - Here's What Happened - MarketBeat - January 22nd, 2026 [January 22nd, 2026]
- Quantum Computing Stocks Surge Over 1000% in Three Years - Intellectia AI - January 22nd, 2026 [January 22nd, 2026]
- Could IonQ Become the Nvidia of Quantum Computing? - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Horizon Quantum Explores Faster Ways to Fault-Tolerant Quantum Computing with Alice & Bob - Business Wire - January 22nd, 2026 [January 22nd, 2026]
- 3 Key Ways D-Wave Is Developing an Advantage in Quantum Computing - MarketBeat - January 22nd, 2026 [January 22nd, 2026]
- 2 Top Quantum Computing Stocks to Buy in January - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- IonQ Achieves 99.99% Accuracy in Quantum Computing, Aiming to Build Ecosystem - Intellectia AI - January 20th, 2026 [January 20th, 2026]
- Is This $8 Billion Quantum Computing Stock Too Cheap to Ignore Now? - Yahoo Finance - January 20th, 2026 [January 20th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- What Is the Best Quantum Computing Stock to Own for the Next 5 Years? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Can Rigetti Become the Backbone of Quantum Computing? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Is This $8 Billion Quantum Computing Stock Too Cheap to Ignore Now? - The Motley Fool - January 20th, 2026 [January 20th, 2026]
- Can Rigetti Become the Backbone of Quantum Computing? - Nasdaq - January 20th, 2026 [January 20th, 2026]
- Alphabet and Microsoft Achieve Quantum Computing Breakthroughs with Cash Flows Over $24 Billion - Intellectia AI - January 20th, 2026 [January 20th, 2026]
- Quantum Computing Advances Strongly Correlated Systems with Handover-Iterative VQE and SHCI Convergence - Quantum Zeitgeist - January 20th, 2026 [January 20th, 2026]
- NVIDIAs Strategy Is Shaping The Future Of Quantum Computing - Forbes - January 20th, 2026 [January 20th, 2026]
- After Rigetti Announced a Quantum Computing Delay, How Should You Play RGTI Stock in January 2026? - Barchart.com - January 20th, 2026 [January 20th, 2026]
- Summit on quantum computing tomorrow - Times of India - January 20th, 2026 [January 20th, 2026]
- Jefferies Analyst Dumps Bitcoin Over Quantum Computing Fears, Buys Gold - Bitcoin Magazine - January 18th, 2026 [January 18th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 18th, 2026 [January 18th, 2026]
- Smart Investor: Bank Earnings, Index ETFs, and Quantum Computing Stocks - morningstar.com - January 18th, 2026 [January 18th, 2026]
- Why Quantum Computing Stock Plummeted 38% Last Year but Is Soaring in 2026 - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- IonQ Stock Prediction: Here's Where the Quantum Computing Play Will Be in 1 Year - Nasdaq - January 18th, 2026 [January 18th, 2026]
- Opinion: Will Quantum Computing Be a Quantum Leap for Higher Ed? - GovTech - January 18th, 2026 [January 18th, 2026]
- Fear that quantum computing is on the cusp of cracking cryptocurrency's encryption spurs a global investment firm to remove Bitcoin from... - January 18th, 2026 [January 18th, 2026]
- IonQ Stock Prediction: Here's Where the Quantum Computing Play Will Be in 1 Year - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- Alphabet Invests in Quantum Computing with Capex of $93 Billion - Intellectia AI - January 18th, 2026 [January 18th, 2026]
- Neutral-atom arrays, a rapidly emerging quantum computing platform, get a boost from researchers - Phys.org - January 18th, 2026 [January 18th, 2026]
- Quantum Computing Could Be a $72 Billion Opportunity by 2035. Can IonQ Capture It? - The Motley Fool - January 18th, 2026 [January 18th, 2026]
- A Wall Street analyst warns that quantum computing could eventually crack the cryptography of bitcoin - Business Insider - January 18th, 2026 [January 18th, 2026]
- BTQ Technologies Added To $524.5M VanEck Quantum Computing ETF - Quantum Zeitgeist - January 18th, 2026 [January 18th, 2026]
- Quantum Computing Threat Raises Doubts Over Bitcoin Security - Evrim Aac - January 18th, 2026 [January 18th, 2026]
- Jefferies Removes 10% Bitcoin Allocation Citing Quantum Computing Threats - Intellectia AI - January 18th, 2026 [January 18th, 2026]
- Jefferies Wood drops 10% bitcoin allocation over quantum computing fears - OODAloop - January 18th, 2026 [January 18th, 2026]
- Jefferies Strategist Dumps 10% Bitcoin Allocation Over Quantum Computing Fears - Yellow.com - January 18th, 2026 [January 18th, 2026]
- Jefferies Wood drops Bitcoin on threat from quantum computing - MSN - January 18th, 2026 [January 18th, 2026]
- If I Could Own Only 1 Quantum Computing Stock in 2026, This Would Be It - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- Rigetti and Quantum Computing Stocks Are a Buy, Says Analyst. Look Past the Criticism of Both. - Barron's - January 16th, 2026 [January 16th, 2026]
- Jefferies Wood Drops Bitcoin on Threat From Quantum Computing - Bloomberg.com - January 16th, 2026 [January 16th, 2026]
- Jefferies' Wood drops 10% bitcoin allocation over quantum computing fears - The Block - January 16th, 2026 [January 16th, 2026]
- Rigetti, Quantum Computing initiated with bullish views at Rosenblatt - Seeking Alpha - January 16th, 2026 [January 16th, 2026]
- From Chat to Act: How Quantum Computing Power Fuels the Ascent of AI Agents - 36Kr - January 16th, 2026 [January 16th, 2026]
- Meet the Quantum Computing Stock That Billionaires Can't Get Enough Of (Hint: It's Not IonQ, Rigetti Computing, or D-Wave Quantum) - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- 2 No-Brainer Quantum Computing Stocks to Buy Hand Over Fist for 2026 - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- Top Wall Street equity strategist exits Bitcoin over quantum computing threat - Crypto Briefing - January 16th, 2026 [January 16th, 2026]
- Jefferies Abandons Bitcoin and Shifts 10% Back into Gold amid Quantum Computing Fears - TipRanks - January 16th, 2026 [January 16th, 2026]
- Has Bitcoin peaked? Why Jefferies removes 10% allocation; quantum computing, gold & more - MSN - January 16th, 2026 [January 16th, 2026]
- IonQ's Biggest Advantage in Quantum Computing Could Be Its Biggest Weakness - The Motley Fool - January 16th, 2026 [January 16th, 2026]
- With a Growing Quantum Computing Threat, Consider these 5 Stocks Before They Run - The Globe and Mail - January 16th, 2026 [January 16th, 2026]
- Quantum Computing Stocks IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing Inc. Have Served Up an $840 Million Warning for Wall Street -... - January 16th, 2026 [January 16th, 2026]
- Jefferies withdraws from bitcoin, shifts to gold amid concerns of quantum computing - Mint - January 16th, 2026 [January 16th, 2026]
- Half of All Bitcoin Could Be Stolen in Hours When Quantum Computing Arrives, Says Jefferies - NDTV Profit - January 16th, 2026 [January 16th, 2026]
- Quantum Computing: Plenty Of Cash, Still Waiting On Traction (NASDAQ:QUBT) - Seeking Alpha - January 16th, 2026 [January 16th, 2026]
- From quantum computing to robotaxi rollouts: Tech trends expected to shape 2026 - Mainebiz - January 16th, 2026 [January 16th, 2026]
- Xanadu and Thorlabs partner to advance optical controls for photonic quantum computing - Stocktwits - January 16th, 2026 [January 16th, 2026]
- Project Eleven Secures $20 Million Series A to Protect Digital Assets from Quantum Threats - Quantum Computing Report - January 16th, 2026 [January 16th, 2026]
- EeroQ Demonstrates Scalable Control Architecture Capable of Controlling One Million Qubits with Less than 50 Control Lines - Quantum Computing Report - January 16th, 2026 [January 16th, 2026]
- If I Could Own Only 1 Quantum Computing Stock in 2026, This Would Be It - AOL.com - January 16th, 2026 [January 16th, 2026]
- Quantum Computing (QUBT) Stock Rises As Analyst Sees 'A Lot Of Ways To Win' - Benzinga - January 16th, 2026 [January 16th, 2026]
- Rigetti and quantum computing stocks are a buy, says analyst. Look past the criticism of both. - MSN - January 16th, 2026 [January 16th, 2026]
- Equal1: $60 Million Closed To Bring Quantum Computing To Standard Semiconductor Fabs - Pulse 2.0 - January 16th, 2026 [January 16th, 2026]
- Meet the Quantum Computing Stock That Billionaires Can't Get Enough Of (Hint: It's Not IonQ, Rigetti Computing, or D-Wave Quantum) - Nasdaq - January 16th, 2026 [January 16th, 2026]
- Quantum Computing Achieves Performance Gains with Thermodynamic Recycling and Information Erasure - Quantum Zeitgeist - January 16th, 2026 [January 16th, 2026]
- Want to Invest in Quantum Computing? These 3 Stocks Are Great Buys Right Now. - The Motley Fool - January 11th, 2026 [January 11th, 2026]
- A $550 Million Reason to Buy This Quantum Computing Stock Now - Barchart.com - January 11th, 2026 [January 11th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Barchart.com - January 11th, 2026 [January 11th, 2026]
- Want to invest in quantum computing? These 3 stocks are great buys right now. - MSN - January 11th, 2026 [January 11th, 2026]