Finland brings cryostats and other cool things to quantum computing – ComputerWeekly.com
Fundamental physics research in Finland has led to at least six very successful spin-offs that have supplied quantum technology to the global market for several decades.
According to Pertti Hakonen, an academic at Aalto University, it all started with Olli Viktor Lounasmaa, who in 1965 established the low-temperature laboratory at Aalto University, formerly Helsinki University of Technology. He served as lab director for about 30 years, says Pertti Hakonen, professor at Aalto University.
The low-temperature lab was a long-term investment in basic research in low-temperature physics that has paid off nicely. Hakonen, who has been conducting research in the lab since 1979, witnessed the birth and growth of several spin-offs, including Bluefors, a startup that is now by far the market leader in cryostats for quantum computers.
In the beginning, there was a lot of work on different cryostat designs, trying to beat low-temperature records, says Hakonen. Our present record in our lab is 100 pico-kelvin in the nuclei of rhodium atoms. Thats the nuclear spin temperature in the nuclei of rhodium atoms, not in the electrons.
For quantum computing you dont need temperatures this low. You only need 10 milli-kelvin. A dilution refrigerator is enough for that. In the old days, the cryostat had to be in a liquid helium bath. Bluefors was a pioneer in using liquid-free technology, replacing the liquid helium with a pulse tube cooler, which is cheaper in the long run. The resulting system is called a dry dilution refrigerator.
The pulse tube cooler is based on two stages in series. The first stage brings the temperature down to 70 kelvin and the next stage brings it down to 4 kelvin. Gas is pumped down and up continuously, passing through heat exchangers a process that drops the temperature dramatically.
Bluefors started business with the idea of adding closed-loop dilution refrigeration after pulse tube cooling. In 2005 and 2006, pulse tube coolers became more powerful, says David Gunnarsson, CTO at Bluefors. We used pulse tube coolers to pre-cool at the first two stages, which takes you down to around 3 kelvin. We get the pulse tube coolers from an American company called Cryomech.
Bluefors key differentiator is a closed-loop circulation system, the dilution refrigerator stages, where we circulate a mixture of helium 4 and helium 3 gas. At very cold temperatures, this becomes liquid, which we circulate through a series of well-designed heat exchangers. This approach can get the temperature down to below 10 milli-kelvin. This is where our specialty lies going below the 3 kelvin you get from off-the-shelf coolers.
Bluefors has more than 700 units on the market that are used for both research in publicly funded organisations, and for commercial research and development. One big market that has driven the dilution refrigeration is quantum computing. Anyone currently doing quantum computing based on superconducting qubits is most likely to have a Bluefors cryogenic system.
When a customer recognises the need for a cryogenic system, they talk to Bluefors to decide on the size of the refrigerator. This depends on the tasks they want to do and how many qubits they will use. Then they start looking at the control and measurement infrastructure, which must be tightly integrated with the cryogenic system. Some combination of different components and signalling elements might be added, depending on the frequencies being used. If the control and measurement lines are optical, then optical fibres are included.
As soon as Bluefors and the customer reach an agreement, Bluefors begins to produce the cryogenic enclosure, along with a unique set of options tailored to the use case. Bluefors then runs tests to make sure everything works together and that the enclosure reaches and maintains the temperatures required by the application.
The system has evolved since the company first started marketing its products in 2008. To cool down components with a dilution refrigerator, Bluefors uses a cascade approach, with nested structures that drop an order of magnitude in temperature at each level. The typical configuration includes five stages, with the first stage now bringing the temperature down to 50 kelvin. The temperature goes down to about 4 kelvin at the second stage, and reaches 1 kelvin at the third. It then drops to 100 milli-kelvin at the fourth stage, and at the fifth stage gets down to 10 milli-kelvin, or even below.
The enclosure can cool several qubits, depending on the power dissipation and the temperature the customer needs. A challenge here is that the more power dissipates, the higher the temperature is raised, and every interaction can increase the temperature.
Our most powerful model today can probably run a few hundred qubits in one enclosure, says Gunnarsson. IBM has just announced it has a system with 127 qubits. We can handle that many in one enclosure using the most powerful system we have today.
In most architectures, quantum programs work by sending microwave signals to the qubits. The sequence of signals constitutes a program. Then you have to read the outcome at the end.
The user typically has a microwave source at room temperature, says Gunnarsson. Usually, when it reaches the chips, its at power levels of the order of pico-watts, which is all that is needed to drive a qubit. Pico-watts are one trillionth of a watt a very small power requirement.
That is also a power that is very hard to read out at room temperature. So to read the output from a chip, the signal has to be amplified and taken back up to room temperature. A cascade of amplification is required to get the signal to the level you need.
The microwave control signals and the read-out process at the end constitute a cycle that lasts about 100 nanoseconds. Several such cycles occur per second, collectively making up a quantum program.
Another challenge for quantum computing is to get electronics inside the refrigerators. All operations are performed at very low temperatures, but then the result has to be taken up to room temperature to be read out. Wires are needed to start a program and to read results. The problem is that electrical wires generate heat.
This means that quantum computing lends itself only to programs where the results are not read out until the end one of many reasons interactive application such as Microsoft Excel will never be appropriate for the quantum paradigm.
It also means that every qubit needs at least one control line and then one readout line. Multiplexing can be used to reduce the number of readout lines, but there is still a lot of wiring per qubit. The chips themselves are not that large what takes up most space are all the wires and accompanying components. This makes it challenging to scale up refrigeration systems.
Since Bluefors supplies the cryogenic measurement infrastructure, we developed something we call a high-density solution, where we made it possible to have a six-fold increase in the amount of signal lines you can have in our system, says Gunnarsson. Now you can have up to 1,000 signal lines in a Bluefors state-of-the-art system using our current form factor.
One very recent innovation from Bluefors is a modular concept for cryostats, which is used by IBM. The idea is to combine modules and have information exchanged between them. This modular concept is going to be an interesting development, says Aalto Universitys Hakonen, who since the 1970s has enjoyed a front-row view of the development of quantum technology in Finland.
Finland has a very strong tradition in quantum theory in general and specifically, the quantum physics used in superconducting qubits, which is the platform used by IBM and Google. Now a large area of active research is in quantum algorithms.
How one goes about making a program is a key question, says Sabrina Maniscalco, professor of quantum information and logic at the University of Helsinki. Nowadays, the situation is such that programming quantum computing is much more quantum theory-related than any software ever managed or developed. We are not yet at a stage where a programming language exists that is independent of the device on which it runs. At the moment, quantum computers are really physics experiments.
Finland has long been renowned worldwide for its work in theoretical quantum physics, an area of expertise that plays nicely into the industry growing up around quantum computing. Two other factors that contribute to the growing ecosystem in Finland are the willingness of the government to invest in blue-sky research and the famed Finnish education system, which provides an excellent workforce for startups.
The countrys rich ecosystem of research, stable political support and the education system have resulted in the birth and growth of many startups that develop quantum algorithms. This seems like quite an achievement for a country of only five million inhabitants. But in many ways, Finlands small population is an advantage, creating a tight-knit group of experts, some of whom wear several different hats.
Maniscalco is a case in point. In addition to her research into quantum algorithms at the University of Helsinki, she is also CEO of quantum software startup Algorithmiq, which is focused on developing quantum software for life sciences.
We are trying to make quantum computers more like standard computers, but its still at a very preliminary stage Sabrina Maniscalco, University of Helsinki
As a researcher, I am first of all a theorist, she says. I dont get involved in building hardware, but I have a group of several people developing software. Quantum software is as important as hardware nowadays because quantum computers work very differently from classical computers. Classical software doesnt work at all on quantum systems. You have to completely change the way you program computers if you want to use a quantum computer.
We are trying to make quantum computers more like standard computers, but its still at a very preliminary stage. To program a quantum computer, you need quantum physicists who work with computer scientists, and experts in the application domain for example, quantum chemists. You have to start by creating specific instructions that make sense in terms of the physics experiments that quantum computers are today.
Algorithm developers need to take into account the type of quantum computer they are using the two leading types are superconducting qubits and trapped ions. Then they have to look at the quality of the qubits. They also need to know something about quantum information theory, and about the noise and imperfections that affect the qubits the building blocks of quantum computers.
Conventional computers use error correction, says Maniscalco. Thanks to error correction, the results of the computations that are performed inside your laptop or any computer are reliable. Nothing similar currently exists with quantum computers. A lot of people are currently trying to develop a quantum version of these error correction schemes, but they dont exist yet. So you have to find other strategies to counter this noise and the resulting errors.
Overcoming the noisiness of the current generation of qubits is one of many challenges standing in the way of practical quantum computers. Once those barriers are lifted, the work Maniscalco and other researchers in Finland are doing on quantum algorithms will certainly have an impact around the world.
Read more from the original source:
Finland brings cryostats and other cool things to quantum computing - ComputerWeekly.com
- Quantum computing gears up for its 'ChatGPT Moment' and a potential talent shortage - Business Insider - April 30th, 2025 [April 30th, 2025]
- EPBs Chattanooga Quantum Center Will Offer Quantum Computing and Networking - Telecompetitor - April 30th, 2025 [April 30th, 2025]
- QCI ALERT: Bragar Eagel & Squire, P.C. is Investigating Quantum Computing, Inc. on Behalf of Long-Term Stockholders and Encourages Investors to... - April 30th, 2025 [April 30th, 2025]
- European IT professionals fear impact of quantum computing on cybersecurity - techzine.eu - April 30th, 2025 [April 30th, 2025]
- IonQ Announces $22M Deal with EPB Establishing Chattanooga, Tennessee as the First Quantum Computing & Networking Hub in the U.S. - Business Wire - April 30th, 2025 [April 30th, 2025]
- QUBT Deadline: Rosen Law Firm Urges Quantum Computing Inc. (NASDAQ: QUBT) Stockholders to Contact the Firm for Information About Their Rights -... - April 30th, 2025 [April 30th, 2025]
- Important Quantum Computing Concerns Are Resolving For The Better (NASDAQ:QUBT) - Seeking Alpha - April 30th, 2025 [April 30th, 2025]
- Quantum computing: Revolutionising the future of technology - London Daily News - April 30th, 2025 [April 30th, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Nasdaq - April 25th, 2025 [April 25th, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Nasdaq - April 25th, 2025 [April 25th, 2025]
- Yale experts weigh in on the future of quantum computing amid political tension - Yale Daily News - April 25th, 2025 [April 25th, 2025]
- Yale experts weigh in on the future of quantum computing amid political tension - Yale Daily News - April 25th, 2025 [April 25th, 2025]
- Expert outlines impact of quantum computing | UNC-Chapel Hill - The University of North Carolina at Chapel Hill - April 25th, 2025 [April 25th, 2025]
- Levi & Korsinsky Announces the Filing of a Securities Class Action on Behalf of Quantum Computing Inc.(QUBT) Shareholders - PR Newswire - April 25th, 2025 [April 25th, 2025]
- Quantum Computing Market to Hit $2.2B: Survey - IoT World Today - April 25th, 2025 [April 25th, 2025]
- Quantum Computing: The war of stories has already started - businesslife.co - April 25th, 2025 [April 25th, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - The Motley Fool - April 25th, 2025 [April 25th, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- Quantum computing to revolutionise innovation and scientific discovery: Jyotiraditya Scindia - Social News XYZ - April 25th, 2025 [April 25th, 2025]
- Discover Why Quantum Computing Stocks Are Soaring Today - 24/7 Wall St. - April 25th, 2025 [April 25th, 2025]
- Quantum Computing Is a Hot Topic in the Artificial Intelligence Sector. But Which Stocks Will Still be Around Decades From Now? - The Motley Fool - April 10th, 2025 [April 10th, 2025]
- Quantum computing breakthrough could make 'noise' forces that disrupt calculations a thing of the past - Yahoo - April 10th, 2025 [April 10th, 2025]
- JPMorgan Goes Big on Quantum Computing. How It Plans to Use the Technology. - Barron's - April 10th, 2025 [April 10th, 2025]
- The U.S. just made the discovery of the century, this new superconducting material is set to give quantum computing a major boost. - Farmingdale... - April 10th, 2025 [April 10th, 2025]
- The dream of quantum computing is closer than ever - USA Today - April 10th, 2025 [April 10th, 2025]
- Cleveland Clinic hosts forum on quantum computing in healthcare - Cleveland.com - April 10th, 2025 [April 10th, 2025]
- Cloud-based Quantum Computing Market Share, Value, and Growth Analysis | Scope By 2032 - openPR.com - April 10th, 2025 [April 10th, 2025]
- BTQ Technologies Announces Strategic Partnership with QPerfect, Accelerating Neutral Atom Quantum Computing Applications - PR Newswire - April 10th, 2025 [April 10th, 2025]
- The Coming Convergence Of AI And Quantum Computing - Forbes - April 10th, 2025 [April 10th, 2025]
- BTQ Technologies to Invest Over $2 Million in QPerfect to Advance Neutral Atom Quantum Computing - The Quantum Insider - April 10th, 2025 [April 10th, 2025]
- Quantum Computing and Drug Development - - April 10th, 2025 [April 10th, 2025]
- Ep857 The threat and opportunity represented by quantum computing - IBS Intelligence - April 10th, 2025 [April 10th, 2025]
- DARPA Just Picked IonQ in a Major Win for the Quantum Computing Company. Is That Enough to Buy IONQ Stock on the Dip? - Barchart.com - April 10th, 2025 [April 10th, 2025]
- SPECIAL | The dream of quantum computing is closer than ever - iHeart - April 10th, 2025 [April 10th, 2025]
- Google, Microsoft and IBM are bullish on quantum computing. Are the chips of the future for real? - CNBC - April 8th, 2025 [April 8th, 2025]
- Levi & Korsinsky Notifies Shareholders of Quantum Computing Inc.(QUBT) of a Class Action Lawsuit and an Upcoming Deadline - PR Newswire - April 8th, 2025 [April 8th, 2025]
- Cleveland Clinic and CAS to Leverage Quantum Computing and AI in Drug Discovery Effort - HPCwire - April 8th, 2025 [April 8th, 2025]
- How Quantum Computing and Advanced AI Are Redefining the Boundaries of Human Thought - Built In - April 8th, 2025 [April 8th, 2025]
- Bitcoin Developer Proposes Hard Fork to Protect BTC From Quantum Computing Threats - CoinDesk - April 8th, 2025 [April 8th, 2025]
- QUBT INVESTOR ALERT: Bronstein, Gewirtz and Grossman, LLC Announces that Quantum Computing Inc. Investors with Substantial Losses Have Opportunity to... - April 8th, 2025 [April 8th, 2025]
- Quantum Computing Inc. Class Action: The Gross Law Firm Reminds Quantum Computing Inc. Investors of the Pending Class Action Lawsuit with a Lead... - April 8th, 2025 [April 8th, 2025]
- QUBT Investors Have Opportunity to Lead Quantum Computing Inc. Securities Fraud Lawsuit with the Schall Law Firm - PR Newswire - April 8th, 2025 [April 8th, 2025]
- Americans once again make headlines in computing with the discovery of a quantum highway that raises great hopes. - Farmingdale Observer - April 8th, 2025 [April 8th, 2025]
- Three Canadian companies vying for U.S. quantum computing funding as race to develop technology heats up - The Globe and Mail - April 3rd, 2025 [April 3rd, 2025]
- What will quantum computing actually look like? - Defense One - April 3rd, 2025 [April 3rd, 2025]
- Are businesses ready for the disruption of quantum computing? - Kyndryl - April 3rd, 2025 [April 3rd, 2025]
- Rigetti Computing Selected to Participate in DARPAs Quantum Benchmarking Initiative - GlobeNewswire - April 3rd, 2025 [April 3rd, 2025]
- IonQ Selected by DARPA for Quantum Benchmarking Initiative (QBI) to Advance Quantum Computing - Business Wire - April 3rd, 2025 [April 3rd, 2025]
- Atom Computing selected by DARPA to explore near-term utility-scale quantum computing with neutral atoms - PR Newswire - April 3rd, 2025 [April 3rd, 2025]
- Advanced quantum computing could transform particle physics research - Digital Watch Observatory - April 3rd, 2025 [April 3rd, 2025]
- IonQ in focus as DARPA picks it for quantum computing initiative (IONQ:NYSE) - Seeking Alpha - April 3rd, 2025 [April 3rd, 2025]
- Shareholders that lost money on Quantum Computing Inc.(QUBT) should contact The Gross Law Firm about pending Class Action - QUBT - PR Newswire - April 3rd, 2025 [April 3rd, 2025]
- Top benefits and advantages of quantum computing - TechTarget - April 3rd, 2025 [April 3rd, 2025]
- Quantum Computing Breakthrough: Photon Router Transforms Microwave Qubits into Light Pulses - The Debrief - April 3rd, 2025 [April 3rd, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - PR Newswire - April 3rd, 2025 [April 3rd, 2025]
- Rigetti Computing Has Room to Grow. Why the CEO Is Tempering Expectations for Quantum. - Barron's - April 3rd, 2025 [April 3rd, 2025]
- Cautious Optimism: Evaluating Alphabets Position in the Nascent Quantum Computing Market - TipRanks - April 3rd, 2025 [April 3rd, 2025]
- D-Wave Stock Slips. Why Nvidias Quantum Computing Event Hurt the Shares. - Barron's - March 22nd, 2025 [March 22nd, 2025]
- Nvidia Is Going Big on Quantum Computing, and It Isnt Going It Alone - Barron's - March 22nd, 2025 [March 22nd, 2025]
- 6 Top Quantum Computing Stocks to Buy in 2025 - The Motley Fool - March 22nd, 2025 [March 22nd, 2025]
- Recommended Reading Evaluating the Performance of Quantum Process Units at Large Width and Depth - Quantum Computing Report - March 22nd, 2025 [March 22nd, 2025]
- When will quantum computing be available? It depends - TechTarget - March 22nd, 2025 [March 22nd, 2025]
- Quantum-computing stocks fall again as Jensen Huang and other CEOs temper expectations around the bleeding-edge tech: Not good enough yet for... - March 22nd, 2025 [March 22nd, 2025]
- Is quantum computing the future of tech and where to find investment opportunities By Investing.com - Investing.com - March 22nd, 2025 [March 22nd, 2025]
- Jensen Huang backpedals on remarks that sent quantum computing stocks spiraling - TechSpot - March 22nd, 2025 [March 22nd, 2025]
- D-Wave Introduces Quantum Blockchain Architecture, Featuring Enhanced Security and Efficiency over Classical Computing - Business Wire - March 22nd, 2025 [March 22nd, 2025]
- Nvidia CEO Jensen Huang says he was wrong about quantum computing. But he might be right - Quartz - March 22nd, 2025 [March 22nd, 2025]
- Nvidia will build accelerated quantum computing research center - VentureBeat - March 22nd, 2025 [March 22nd, 2025]
- Quantum Computing Stocks Jump Ahead Of Nvidia GTC Conference Next Week - Investor's Business Daily - March 18th, 2025 [March 18th, 2025]
- 5 wild things quantum computing could unlock now that Big Tech believes a breakthrough is within reach - Business Insider - March 18th, 2025 [March 18th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - March 18th, 2025 [March 18th, 2025]
- How Quantum Computing And The Metaverse Will Transform Your Career - Forbes - March 18th, 2025 [March 18th, 2025]
- QUBT INVESTOR ALERT: Bronstein, Gewirtz and Grossman, LLC Announces that Quantum Computing Inc. Shareholders Have Opportunity to Lead Class Action... - March 18th, 2025 [March 18th, 2025]
- Cloudflare is already selling security tools for the quantum computing era - Quartz - March 18th, 2025 [March 18th, 2025]
- Norma and Neowiz Partner to Explore Quantum Computing and AI for Game Development - The Quantum Insider - March 18th, 2025 [March 18th, 2025]
- China to spend $55 billion on R&D in 2025 Semiconductor, AI and quantum computing fields to benefit - Tom's Hardware - March 18th, 2025 [March 18th, 2025]
- D-Wave Quantum leads massive rally in quantum computing stocks as its revenue outlook goes parabolic - Sherwood News - March 18th, 2025 [March 18th, 2025]
- Arqit leads quantum computing stocks higher ahead of Nvidia's GTC event - Seeking Alpha - March 18th, 2025 [March 18th, 2025]
- Quantum Computing (QUBT) to Release Earnings on Thursday - MarketBeat - March 18th, 2025 [March 18th, 2025]
- Nvidia's Jensen Huang to unveil cutting-edge AI and quantum computing processors - Firstpost - March 18th, 2025 [March 18th, 2025]