Breaking the Quantum Limit: From Einstein-Bohr Debates to Achieving Unattainable Efficiency – SciTechDaily
In the Barz groups experiment with a two-stage interferometer auxiliary photons are used to generate distinct measurement patterns for all four Bell states, increasing the efficiency beyond the traditional limit of 50%. Credit: Jon Heras, Cambridge Illustrators
Researchers at the University of Stuttgart have demonstrated that a key ingredient for many quantum computation and communication schemes can be performed with an efficiency that exceeds the commonly assumed upper theoretical limit thereby opening up new perspectives for a wide range of photonic quantum technologies.
Quantum science not only has revolutionized our understanding of nature, but is also inspiring groundbreaking new computing, communication, and sensor devices. Exploiting quantum effects in such quantum technologies typically requires a combination of deep insight into the underlying quantum-physical principles, systematic methodological advances, and clever engineering. And it is precisely this combination that researchers in the group of Prof. Stefanie Barz at the University of Stuttgart and the Center for Integrated Quantum Science and Technology (IQST) have delivered in recent study, in which they have improved the efficiency of an essential building block of many quantum devices beyond a seemingly inherent limit.
One of the protagonists in the field of quantum technologies is a property known as quantum entanglement. The first step in the development of this concept involved a passionate debate between Albert Einstein and Niels Bohr. In a nutshell, their argument was about how information can be shared across several quantum systems. Importantly, this can happen in ways that have no analog in classical physics.
The discussion that Einstein and Bohr started remained largely philosophical until the 1960s, when the physicist John Stewart Bell devised a way to resolve the disagreement experimentally. Bells framework was first explored in experiments with photons, the quanta of light. Three pioneers in this field Alain Aspect, John Clauser, and Anton Zeilinger were jointly awarded last years Nobel Prize in Physics for their groundbreaking works toward quantum technologies.
Bell himself died in 1990, but his name is immortalized not least in the so-called Bell states. These describe the quantum states of two particles that are as strongly entangled as is possible. There are four Bell states in all, and Bell-state measurements which determine which of the four states a quantum system is in are an essential tool for putting quantum entanglement to practical use. Perhaps most famously, Bell-state measurements are the central component in quantum teleportation, which in turn makes most quantum communication and quantum computation possible.
The experimental setup consists exclusively of so-called linear components, such as mirrors, beam splitters, and waveplates, which ensures scalability. Credit: La Rici Photography
But there is a problem: when experiments are performed using conventional optical elements, such as mirrors, beam splitters, and waveplates, then two of the four Bell states have identical experimental signatures and are therefore indistinguishable from each other. This means that the overall probability of success (and thus the success rate of, say, a quantum-teleportation experiment) is inherently limited to 50 percent if only such linear optical components are used. Or is it?
This is where the work of the Barz group comes in. As they recently reported in the journal Science Advances, doctoral researchers Matthias Bayerbach and Simone DAurelio carried out Bell-state measurements in which they achieved a success rate of 57.9 percent. But how did they reach an efficiency that should have been unattainable with the tools available?
Their outstanding result was made possible by using two additional photons in tandem with the entangled photon pair. It has been known in theory that such auxiliary photons offer a way to perform Bell-state measurements with an efficiency beyond 50 percent. However, experimental realization has remained elusive. One reason for this is that sophisticated detectors are needed that resolve the number of photons impinging on them.
Bayerbach and DAurelio overcame this challenge by using 48 single-photon detectors operating in near-perfect synchrony to detect the precise states of up to four photons arriving at the detector array. With this capability, the team was able to detect distinct photon-number distributions for each Bell state albeit with some overlap for the two originally indistinguishable states, which is why the efficiency could not exceed 62.5 percent, even in theory. But the 50-percent barrier has been busted. Furthermore, the probability of success can, in principle, be arbitrarily close to 100 percent, at the cost of having to add a higher number of ancilla photons.
Also, the most sophisticated experiment is plagued by imperfections, and this reality has to be taken into account when analyzing the data and predicting how the technique would work for larger systems. The Stuttgart researchers therefore teamed up with Prof. Dr. Peter van Loock, a theorist at the Johannes Gutenberg University in Mainz and one of the architects of the ancilla-assisted Bell-state measurement scheme. Van Loock and Barz are both members of the BMBF-funded PhotonQ collaboration, which brings together academic and industrial partners from across Germany working towards the realization of a specific type of photonic quantum computer. The improved Bell-state measurement scheme is now one of the first fruits of this collaborative endeavor.
Although the increase in efficiency from 50 to 57.9 percent may seem modest, it provides an enormous advantage in scenarios where a number of sequential measurements need to be made, for example in long-distance quantum communication. For such upscaling, it is essential that the linear-optics platform has a relatively low instrumental complexity compared to other approaches.
Methods such as those now established by the Barz group extend our toolset to make good use of quantum entanglement in practice opportunities that are being explored extensively within the local quantum community in Stuttgart and in Baden-Wrttemberg, under the umbrella of initiatives such as the long-standing research partnership IQST and the recently inaugurated network QuantumBW.
Reference: Bell-state measurement exceeding 50% success probability with linear optics by Matthias J. Bayerbach, Simone E. DAurelio, Peter van Loock and Stefanie Barz, 9 August 2023, Science Advances. DOI: 10.1126/sciadv.adf4080
The work was supported by the Carl Zeiss Foundation, the Centre for Integrated Quantum Science and Technology (IQST), the German Research Foundation (DFG), the Federal Ministry of Education and Research (BMBF, projects SiSiQ and PhotonQ), and the Federal Ministry for Economic Affairs and Climate Action (BMWK, project PlanQK).
Follow this link:
Breaking the Quantum Limit: From Einstein-Bohr Debates to Achieving Unattainable Efficiency - SciTechDaily
- Rigetti vs. Quantum Computing: Which Quantum Stock Is a Smarter Bet? - Zacks Investment Research - July 30th, 2025 [July 30th, 2025]
- World Day Against Trafficking in Persons: Can AI and quantum computing turn the tide? - Finextra Research - July 30th, 2025 [July 30th, 2025]
- SoftBank Uses Quantum Computing to Optimize 5G Base Stations - The Fast Mode - July 30th, 2025 [July 30th, 2025]
- Keysight Technologies and the Quantum Computing Infrastructure Revolution - AInvest - July 30th, 2025 [July 30th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - Yahoo Finance - July 28th, 2025 [July 28th, 2025]
- 3 Quantum Computing Stocks with Positive Investor Sentiment 7/28/2025 - TipRanks - July 28th, 2025 [July 28th, 2025]
- Prediction: Quantum Computing Stock Will Be Worth This Much in 2030 - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- D-Wave Quantum Inc. Stock (QBTS) Opinions on Quantum Computing Surge - Quiver Quantitative - July 28th, 2025 [July 28th, 2025]
- Could a Quantum Computing Bubble Be About to Pop? History Offers a Clear Answer - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- After Soaring 40% in July, Is It Too Late to Buy This Supercharged Quantum Computing Stock? - The Motley Fool - July 28th, 2025 [July 28th, 2025]
- SuperQ Quantum and Economic Development Lethbridge Hosting Masterclass on Business Optimization Using Quantum Computing with Approximately One Hundred... - July 28th, 2025 [July 28th, 2025]
- Quantum Computing Stocks: Market Pros Flag Names Investors Should Watch - Business Insider - July 27th, 2025 [July 27th, 2025]
- The University of Chicago Partners with IBM to Strengthen Quantum Computing Startups in Illinois - Polsky Center for Entrepreneurship and Innovation - July 27th, 2025 [July 27th, 2025]
- After Aerospace, Quantum Computing Tussle Erupts Between Andhra Pradesh And Karnataka - NDTV - July 27th, 2025 [July 27th, 2025]
- Gov. Pritzker Announces Infleqtion to Accelerate Quantum Computing in Illinois and Locate Computing Headquarters in Chicago - RiverBender.com - July 27th, 2025 [July 27th, 2025]
- Why Quantum Computing Could Be the Biggest Breakthrough Since Fire - Inc.com - July 27th, 2025 [July 27th, 2025]
- The Real Reason Quantum Computing Stocks Are Soaring (It's Not What You Think) - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- Is Quantum Computing Inc. the Next Nvidia? - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- Why Some Investors Are Betting Big on Quantum Computing as a Moonshot Artificial Intelligence (AI) Play - The Motley Fool - July 27th, 2025 [July 27th, 2025]
- University of Chicago and IBM Provide IBM Quantum System Two Access and Resources for Illinois Quantum Startups - Quantum Computing Report - July 27th, 2025 [July 27th, 2025]
- 14 Stocks Jim Cramer Discussed As He Went All In On Quantum Computing - Insider Monkey - July 27th, 2025 [July 27th, 2025]
- Whos News: Leadership Updates at Q-CTRL, IonQ, University of Maryland, eleQtron, and JPMorgan Chase - Quantum Computing Report - July 27th, 2025 [July 27th, 2025]
- Buy the Dip on This Quantum Computing Stock - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- UChicago partners with IBM to strengthen quantum computing startups in Illinois - University of Chicago News - July 24th, 2025 [July 24th, 2025]
- Gold clusters mimic atomic spin properties for scalable quantum computing applications - Phys.org - July 24th, 2025 [July 24th, 2025]
- Global Quantum Computing Market Report 2026-2046, with Profiles of 217 Companies Shaping the Quantum Computing Ecosystem, Including Market Leaders,... - July 24th, 2025 [July 24th, 2025]
- Quantum Computing Inc. (QUBT): A Bear Case Theory - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Universal Quantum Joins Open Quantum Institute to Advance Endometriosis Drug Discovery with Quantum Computing - The Quantum Insider - July 24th, 2025 [July 24th, 2025]
- Unpacking the Latest Options Trading Trends in Quantum Computing - Nasdaq - July 24th, 2025 [July 24th, 2025]
- Quantum Computing: Stay Far From The Quantum Realm, Strong Sell (NASDAQ:QUBT) - Seeking Alpha - July 24th, 2025 [July 24th, 2025]
- 2025: An eventful year for quantum computing - The New Indian Express - July 24th, 2025 [July 24th, 2025]
- Riverlane and OQC Move Toward Fault-Tolerant Quantum Computing with QEC Integration - HPCwire - July 24th, 2025 [July 24th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Yahoo Finance - July 24th, 2025 [July 24th, 2025]
- Unlocking the Future: How Advanced Ceramics Are Powering Quantum Computing and Semiconductor Innovation - openPR.com - July 24th, 2025 [July 24th, 2025]
- Global Quantum Computing Market Report 2025: Revenue, Trends, and Key Players - Yahoo Finance - July 22nd, 2025 [July 22nd, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Mitrade - July 22nd, 2025 [July 22nd, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 7/21/2025 - TipRanks - July 22nd, 2025 [July 22nd, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- Want to Invest in Quantum Computing Without the Crazy Risk? Buy These 3 Stocks. - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Is quantum computing the next big thing in stocks? - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- Are We in a Quantum Computing Bubble? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Is Quantum Computing Stock a Buy for Less Than $20? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- After Plummeting by 18%, Could This Quantum Computing Stock Stage a Second-Half Comeback? - AOL.com - July 20th, 2025 [July 20th, 2025]
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance | Newswise - Newswise - July 18th, 2025 [July 18th, 2025]
- Quantum Computing Seen As Top Cybersecurity Threat by 65% of Firms - IoT World Today - July 18th, 2025 [July 18th, 2025]
- SuperQ Quantum Computing Partners with Web Summit to Expand Global Reach - TipRanks - July 18th, 2025 [July 18th, 2025]
- They Put Light and Quantum Into One Chip!: Scientists Unveil Silicon Breakthrough That Could Reshape the Future of Computing Forever - Rude Baguette - July 16th, 2025 [July 16th, 2025]
- What is quantum computing? Heres everything you need to know right now - Fast Company - July 16th, 2025 [July 16th, 2025]
- Warren Buffett Is Invested in These Three Magnificent Quantum Computing Stocks. Here's the Best of the Bunch. - The Motley Fool - July 16th, 2025 [July 16th, 2025]
- Quantum Computing Breakthrough: Rigetti Doubles Performance with Industry-First 36-Qubit Multi-Chip System - Stock Titan - July 16th, 2025 [July 16th, 2025]
- Why Is Sumitomo Corporation Taking on Quantum Computing? Pioneering Real-World Applications at the Forefront of Social Implementation -... - July 16th, 2025 [July 16th, 2025]
- Oxford Ionics and Iceberg Quantum Partner to Accelerate Fault-Tolerant Quantum Computing - HPCwire - July 16th, 2025 [July 16th, 2025]
- Analysts See over 30% Upside in These 3 Quantum Computing Stocks 7/14/2025 - TipRanks - July 16th, 2025 [July 16th, 2025]
- How Mass. is becoming a hub for the quantum computing industry - WBUR - July 16th, 2025 [July 16th, 2025]
- Ohio awards millions to Miami University for 'quantum computing workforce' - spectrumlocalnews.com - July 16th, 2025 [July 16th, 2025]
- Could IonQ Be the Nvidia of Quantum Computing? - 24/7 Wall St. - July 16th, 2025 [July 16th, 2025]
- Quantum (QUBT) Computing Rallies 8.7% Ahead of Q2 Earnings - Yahoo Finance - July 16th, 2025 [July 16th, 2025]
- Wanted: enabling technologies in quantum computing for artificial intelligence (AI) and cyber security - Military Aerospace - July 16th, 2025 [July 16th, 2025]
- What's Going On With Quantum Computing Stock Today? - Quantum Computing (NASDAQ:QUBT) - Benzinga - July 16th, 2025 [July 16th, 2025]
- ZenaTech creates quantum computing prototype to advance AI drone solutions - Evertiq - July 16th, 2025 [July 16th, 2025]
- AmpliTechs Cryogenic LNAs Power the Future of Quantum Computing and AI - Yahoo Finance - July 16th, 2025 [July 16th, 2025]
- Quantum Computing Inc. Stocks: Time to Buy or Wait? - StocksToTrade - July 16th, 2025 [July 16th, 2025]
- Think Quantum Computing Will Be the Next Big Thing? These Are the 2 Stocks to Buy Today - 24/7 Wall St. - July 14th, 2025 [July 14th, 2025]
- Rigetti Computing (RGTI): At the Quantum Inflection Point A Leveraged Play on Institutional Adoption - AInvest - July 14th, 2025 [July 14th, 2025]
- NTT Research and Tohoku University Collaborate on Quantum Enhanced Coherent Ising Machines - Quantum Computing Report - July 14th, 2025 [July 14th, 2025]
- Better Quantum Computing Stock: D-Wave Quantum vs. IonQ - MSN - July 14th, 2025 [July 14th, 2025]
- Better Quantum Computing Stock: D-Wave Quantum vs. IonQ - The Motley Fool - July 12th, 2025 [July 12th, 2025]
- ZenaTech Creates First Quantum Computing Prototype Enabling Disruptive AI Drone Speed and Precision for Future Commercial and US Defense Applications... - July 12th, 2025 [July 12th, 2025]
- Nearly two-thirds of organizations consider quantum computing as the most critical cybersecurity threat in 35 years - Capgemini - July 12th, 2025 [July 12th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - Nasdaq - July 12th, 2025 [July 12th, 2025]
- Quantum Computing - Why BTC isn't the biggest worry for COINBASE:BTCUSD by Profit_Through_Patience - TradingView - July 10th, 2025 [July 10th, 2025]
- 3 Artificial Intelligence (AI) Stocks Could Lead the Quantum Computing Revolution - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- D-Wave, Yonsei, Incheon team up to boost quantum computing - Evertiq - July 10th, 2025 [July 10th, 2025]
- Is Rigetti Computing the Top Quantum Computing Stock for the Second Half of 2025? - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - The Motley Fool - July 10th, 2025 [July 10th, 2025]
- SuperQ Quantum Computing Inc. to Begin Trading on CSE as QBTQ - TipRanks - July 10th, 2025 [July 10th, 2025]
- Why Quantum Computing Stock Skyrocketed 69.3% in June -- and What Comes Next? - AOL.com - July 10th, 2025 [July 10th, 2025]
- This Quantum Computing Stock Just Raised $1 Billion And Analyst Says Its Only Getting Started - IonQ (NYSE:IONQ) - Benzinga - July 10th, 2025 [July 10th, 2025]
- Nearly two-thirds of organizations consider quantum computing as the most critical cybersecurity threat in 3-5 years - The Manila Times - July 10th, 2025 [July 10th, 2025]
- Quantum Computing (NASDAQ:QUBT) Shares Down 2.2% - Here's What Happened - MarketBeat - July 10th, 2025 [July 10th, 2025]