To Restrict, or Not to Restrict, That Is the Quantum Question – Lawfare
Innovation powerthe ability to invent, scale, and adapt emerging technologieswill determine which country prevails in the great power competition of the 21st century. Export controls accordingly assume a central position in the U.S. foreign policy toolkit, carrying the ability to significantly impact an adversarys innovation potential. In October 2022, the Biden administration introduced semiconductor, artificial intelligence, and supercomputing-related export controls on China and has since hinted that similar restrictions on other technologies, including quantum information science, may soon follow.
U.S. policymakers are right to identify quantum information science as a critical technology area ripe for restriction, but introducing export controls now is likely to cause more harm than good.
Establishing U.S. leadership in quantum information science, which includes the subfields of quantum computing, quantum sensing, and quantum communications, ranks among the Biden administrations highest national security priorities. Quantum technologies promise to dramatically increase computing power and speed, enabling machines to solve problems beyond the capacity of current-generation computers. They are also inherently dual use, meaning they can be applied to both military and civilian contexts.
The potential strategic advantages of quantum technologies are numerous and significant. Quantum-enabled countries could crack an adversarys encryption methods, build unbreakable communications networks, and develop the worlds most precise sensors. The first country to operationalize quantum technologies will gain the ability to threaten adversaries corporate, military, and government infrastructure more quickly than an adversary can establish effective defenses. Beyond the direct military applications, quantum technologies could further deliver significant economic advantages in a range of industries, from aerospace and defense to pharmaceuticals and automotive.
Given its strategic importance, quantum technology has become a focal point in the ongoing competition between Beijing and Washington. In line with the protect pillar of the Biden administrations two-pronged technology strategy, U.S. policymakers have already implemented a number of narrowly scoped export controls on quantum technology in an effort to safeguard critical U.S. technological advances.
Quantum sensing is the only general category of quantum information science with U.S. export controls in place. Unlike other quantum technology categories, the potential defense applications of quantum sensors are relatively clear and achievable in the near- to mid-term. Within the next five years, for example, China could leverage quantum sensors to enhance its counter-stealth, counter-submarine, image detection, and position, navigation, and timing (PNT) capabilities. China could additionally build quantum-enabled high-precision gravimeters, enhancing its ability to identify camouflaged objects, as well as deposits of oil and minerals.
Other existing U.S. quantum technology controls target specific end users, rather than general technology categories. In November 2021 and March 2022, the U.S. Department of Commerce added three Chinese and one Russian quantum technology organization to its Entity List for attempting to acquire U.S.-origin quantum technologies for military purposes. The organizations inclusion on the list subjects them to supplemental license requirements for the export or transfer of certain quantum products.
The war in Ukraine has led to an expansion of quantum technology restrictions. In September 2022, the U.S. Office of Foreign Assets Control (OFAC) prohibited Russian persons from receiving various quantum computing and cryogenic refrigeration services, including infrastructure, web hosting, data processing, computer systems integration design, and repair services. The ban does not apply to certain U.S.-owned or controlled entities located in Russia, nor to services provided in connection with the termination or divestiture of entities located in Russia.
In addition, the OFAC issued a separate determination that gives it the authority to designate any current or former operative in Russias quantum computing sector as a Specially Designated National. The assets of designated individuals or entities are frozen, and U.S. persons are generally prohibited from conducting any business or financial transactions with them.
While existing controls on quantum technology are relatively haphazard and disconnected, the White House is currently exploring a more unified and comprehensive round of controls intended specifically to blunt Chinas access to U.S. quantum computing equipment. When asked at a public event in October 2022 whether the Biden administration would subject quantum technology to additional export controls, Under Secretary of Commerce for Industry and Security Alan F. Estevez stated, If I were a betting person, Id put down money on that.
Forthcoming regulations on quantum technology could be structured in a variety of ways. U.S. policymakers could choose to expand existing controls targeting explicit end users and use cases, or they could opt for novel controls focused on quantum technology itself. I discuss these approaches in detail below.
U.S. policymakers could restrict the flow of quantum technologies to a broader base of end users, such as Chinas national laboratories, companies within the Chinese militarys supply chain, or companies accused of human rights abuses. This piecemeal approach mirrors existing controls on Russian and Chinese entities. It is a time- and resource-intensive endeavor, and leaves gaps that targeted entities can exploit to ultimately receive restricted items. Entity List designations, for example, do not capture subsidiaries unless such subsidiaries are specifically named as well. SenseTime, Chinas largest facial recognition startup, has leveraged this loophole to skirt the Biden administrations Oct. 7 export controls. Despite its inclusion on the Entity List, SenseTime reportedly bought advanced U.S. chips directly through its own subsidiaries in early 2023.
The effectiveness of the end user approach also hinges on multilateral support and cooperation. Unilateral U.S. export controlsmeasures taken without the approval or cooperation of other countriescould be effective in technology areas in which the U.S. maintains a decisive edge and unique capabilities. But multiple countries, including Singapore, Germany, the Netherlands, and Japan, are competitive in quantum technology. Unilateral U.S. controls thus afford foreign firms commercial incentives to backfill restricted technology to targeted entities.
Future controls could also focus on preventing adversaries application of quantum technologies to certain use cases, resembling existing controls on defense-relevant quantum sensors. U.S. policymakers might target quantum key distribution networks, which hold the potential to improve Chinas information security and multi-domain communications system. They may also take aim at quantum computers designed specifically to model nuclear materials or to augment Chinas nuclear command-and-control infrastructure.
All of this, however, is easier said than done. It is impossible to predict which quantum technologies will have immediate defense applications, and it is difficult to distinguish peaceful applications of quantum from military ones. This approach thus carries high intelligence requirements and demands processes that can quickly adapt to unexpected developments.
U.S. policymakers might alternatively pursue a new approach and target quantum technology itself. Policymakers could restrict entire integrated quantum systems, like functional quantum computers or quantum communications satellites, and the components required to build them. But a systems-level approach is currently difficult to impose. Few scalable quantum systems exist, and the technical benchmarks for characterizing their performance are still unfolding. China boasts that it possesses a 24-qubit quantum computer, for example, but quantum computers will likely require up to 1 million qubits to produce any meaningful real-world applications. Because existing quantum technologies remain at a low level of readiness, systems-level controls are not particularly necessary or impactful.
Narrower controls under a technology-centric framework could regulate specific quantum hardware and components. Similar to the United States recent export controls on graphics processing units, U.S. policymakers could restrict Chinas access to technologies that facilitate the refinement of qubit capacity, a necessary step toward the development of scalable quantum computers. Examples include quantum chips of a certain level of output or error correction rate, or specific types of processors that spatially separate qubits. Other potentially targetable assets include helium dilution refrigerators, cryogenic ion trap packages, and magneto-optical traps.
The challenge with a components-oriented approach is that there is currently no single supply chain for quantum, and the technology chokepoints are unclear. Quantum developers are pursuing at least 12 quantum computing modalities in parallel, each dependent on different critical components with very little overlap. For example, some modalitieslike superconducting qubitsrequire helium dilution refrigerators to function. Otherslike trapped-ion qubitsinstead rely on high-quality lasers and isotopically pure samples of various elements. Thus, the impact of blocking Chinas access to helium dilution refrigerators could be detrimental to its quantum development or completely irrelevant depending on which quantum computing modality prevails.
In short, each of the potential export control frameworks carry significant pitfalls and are unlikely to be effective in protecting the U.S.s strategic edge at this stage of development. Despite valid concerns about Chinas activity in the quantum sector, it is too early for export controls. The future trajectory of quantum technology is highly uncertain, and premature restriction carries more risk than reward.
Quantum information science is a field of international collaboration, and much of the top technical talent resides outside the United States. Export controls could limit the exchange of ideas, block U.S. scientists from accessing promising research and early-stage prototypes, and stifle the scientific advancement of quantum technology before it demonstrates any significant commercial benefit. Ill-timed export controls could stymie progress on a range of beneficial quantum computing applications, from drug design and discovery to financial fraud detection and port logistics optimization.
Export controls could also adversely affect the U.S. quantum industry. Many domestic quantum companies endured a sharp increase in interest rates in 2022 and lack clear revenue streams. Export controls could further diminish the already fragile financial health of the U.S. quantum startup environment, directly hindering Americas potential for innovation in the quantum sector.
Even export controls that specifically target China could prove counterproductive. China and the United States are each others top collaborators on quantum research. U.S. and Chinese-affiliated scientists co-authored several highly cited quantum publications in 2022. China also holds the highest number of patents across the full spectrum of quantum technology and currently leads in the development of quantum communications. Continued collaboration presents serious technology leakage, industrial espionage, and intellectual property risks that must be actively policed. But reducing cooperation now risks impeding U.S. innovation and losing visibility into Chinas research efforts.
U.S. outbound investment mechanisms may be better suited to address current challenges. Almost all quantum technology research and development in China is state controlled, but the countrys opaque private quantum technology ecosystem is growing slowly and appears to attract some U.S. investment. Screening tools, including the establishment of a mandatory notification regime for American investments in Chinas quantum technology sector, could offer policymakers a means to track the exchange of technology and expertise and monitor Chinas progress in the field.
Although export controls are not an immediately viable option, U.S. policymakers can take several steps to prepare for a future in which trade restrictions become more pertinent.
First, the Biden administration should clearly define its goals in quantum information science, which will inform the types of export controls it leverages down the road. The White House should consult with industry partners to determine which quantum technology areas carry the greatest economic potentialand consider whether leading across all quantum technology subsets is necessary to ensure U.S. national security. The goal-setting process will help direct U.S. research efforts, streamline resourcing, and identify areas ripe for future restriction. At this stage of development, a prudent guiding goal for quantum information science may involve ensuring U.S. influence over, and access to, every key part of the emerging quantum technology supply chain.
Second, the Biden administration should direct an organization to conduct quantum supply chain mapping on a continuous basis and resource it appropriately. The Quantum Economic Development Consortium and The Quantum Insider are well positioned to assume this responsibility. Many quantum startups lack the capacity to monitor supply chains themselves. White House-directed supply chain mapping can help mitigate the risk of dependence on competitor nations for critical quantum components and identify key bottlenecks as quantum technologies mature.
The Biden administration should also consider what level of supply chain dependence on allies and partners is acceptable for the United States. A completely domestic U.S. supply chain is prohibitively expensive and unrealistic given the number of potentially important components in play. The administration should leverage the Defense Production Act, as well as the Small Business Innovation Research and Small Business Technology Transfer programs, to boost domestic capacity for the production of quantum components that are deemed too sensitive to reside predominantly outside the United States. It should simultaneously develop an international forum to coordinate quantum technology supply chains with other leading quantum countries, including Australia, Canada, Finland, the Netherlands, Japan, and Israel.
Finally, U.S. policymakers need timely and accurate information about adversaries capabilities and intentions in order to determine when export controls on quantum technologies become necessary. They must therefore appropriately resource the intelligence community and the Department of Commerce to meet the quantum technology challenge.
U.S. government analysts working on quantum information science should develop metrics to assess the utility of export controls as the technology develops. The emergence of joint ventures between U.S. and Chinese state-linked quantum startups, for instance, might elevate the risks associated with open and collaborative research processes to an unacceptable level, introducing the need for greater oversight and regulation. Policymakers may also consider implementing export controls on quantum technologies once the U.S. secures a definitive lead over foreign competitors. Other useful metrics might illuminate Chinas efforts to commercialize quantum technologies, control the quantum market, or integrate quantum technologies into its national defense infrastructure.
Export controls are an increasingly useful tool to prevent adversaries acquisition of sensitive technology and advance U.S. security and economic interests. But they are not a silver bullet solution to U.S.-China technology competition and can even be counterproductive. Premature export controls could impede innovation and handicap U.S. companies. Export controls on quantum technologies may be necessary in the future but should serve as one component of a broader U.S. technology strategy, rather than an end in and of themselves.
Read this article:
To Restrict, or Not to Restrict, That Is the Quantum Question - Lawfare
- D-Wave enters agreement to sell up to $400M shares from time to time - Yahoo Finance - June 14th, 2025 [June 14th, 2025]
- IBM is building a large-scale quantum computer that 'would require the memory of more than a quindecillion of the world's most powerful... - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - The Globe and Mail - June 14th, 2025 [June 14th, 2025]
- IBMs Fault-Tolerant Quantum Computer Breakthrough: Exec More Comfortable Than Ever About 2029 Delivery - TechRepublic - June 14th, 2025 [June 14th, 2025]
- Protection against quantum computing threats now within grasp for companies and institutions - Orange - June 14th, 2025 [June 14th, 2025]
- Planckian Partners With University of Naples to Accelerate Next-Gen Quantum Processor - The Quantum Insider - June 14th, 2025 [June 14th, 2025]
- Bitcoin devs scramble to protect $2.2tn blockchain from looming quantum computer threat - dlnews.com - June 14th, 2025 [June 14th, 2025]
- Quantum Art to Advance Scalable Quantum Computing Through Logical Qubit Compiler and NVIDIA CUDA-Q Integration - The Quantum Insider - June 14th, 2025 [June 14th, 2025]
- Why Shares of D-Wave Quantum Are Sinking This Week - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- Mind-Blowing Quantum Leap: IBMs Groundbreaking Fault-Tolerant PC Set to Revolutionize Tech by 2029Prepare for Unprecedented Computational Power -... - June 14th, 2025 [June 14th, 2025]
- Why it's time to move beyond qubits for assessing quantum progress - Diginomica - June 14th, 2025 [June 14th, 2025]
- Quantum Computers Pose a Grave Risk to The Future. Here's Why. - ScienceAlert - June 10th, 2025 [June 10th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- At 40 ISC 2025 Continues to Connect the Dots - HPCwire - June 10th, 2025 [June 10th, 2025]
- Vodafone teams up with Orca for quantum-powered network optimisation - Capacity Media - June 10th, 2025 [June 10th, 2025]
- IonQ goes quantum shopping: Buys Oxford Ionics for $1.075B - Silicon Canals - June 10th, 2025 [June 10th, 2025]
- Infleqtion Selected to Power the UKs Largest Quantum Computing Breakthrough - Business Wire - June 10th, 2025 [June 10th, 2025]
- BTQ Technologies Announces Strategic Partnership with QPerfect to Achieve Quantum Advantage Using Neutral Atom Quantum Processors - WV News - June 10th, 2025 [June 10th, 2025]
- Quantum computers are on the edge of revealing new particle physics - New Scientist - June 10th, 2025 [June 10th, 2025]
- Where Will IonQ Be in 5 Years? - The Motley Fool - June 10th, 2025 [June 10th, 2025]
- IonQ buys Oxford Ionics for $1.075B: 6 things to know about it - Tech Funding News - June 10th, 2025 [June 10th, 2025]
- IBM plans to build first-of-its-kind quantum computer by 2029 after 'solving key bottleneck' - Live Science - June 10th, 2025 [June 10th, 2025]
- IBM aims to build the worlds first large-scale, error-corrected quantum computer by 2028 - MIT Technology Review - June 10th, 2025 [June 10th, 2025]
- IBM announced that it will release a quantum computer that has solved the error problem by 2029. Qua.. - - June 10th, 2025 [June 10th, 2025]
- Vodafone aims to leverage quantum computer to streamline broadband installation routes - Telecompaper - June 10th, 2025 [June 10th, 2025]
- This tiny quantum computer could blow massive data centers out of the water with speed, power, and pure physics - TechRadar - June 1st, 2025 [June 1st, 2025]
- Where Will Rigetti Computing Be in 5 Years? - Yahoo Finance - June 1st, 2025 [June 1st, 2025]
- IonQ vs. Microsoft: Which Quantum Cloud Stock Is the Better Buy Today? - Zacks Investment Research - June 1st, 2025 [June 1st, 2025]
- Q1 2025 Quantum Technology Investment: Whats Driving the Surge in Quantum Investment? - The Quantum Insider - June 1st, 2025 [June 1st, 2025]
- Where Will Rigetti Computing Be in 5 Years? - The Motley Fool - June 1st, 2025 [June 1st, 2025]
- Our Online World Relies on Encryption. What Happens If It Fails? - Boston University - June 1st, 2025 [June 1st, 2025]
- Jim Cramer on D-Wave Quantum (QBTS): Of the Ones That Are Out There, This is the Best - Insider Monkey - June 1st, 2025 [June 1st, 2025]
- It Might Actually Be 20 Times Easier for Quantum Computers to Break Bitcoin, Google Says - Decrypt - June 1st, 2025 [June 1st, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - The Motley Fool - June 1st, 2025 [June 1st, 2025]
- IonQ vs. Microsoft: Which Quantum Cloud Stock Is the Better Buy Today? - Yahoo Finance - June 1st, 2025 [June 1st, 2025]
- CEOs who aren't yet preparing for the quantum revolution are 'already too late,' IBM exec says - Business Insider - June 1st, 2025 [June 1st, 2025]
- New quantum visualisation techniques could accelerate the arrival of fault-tolerant quantum computers - University of Oxford - June 1st, 2025 [June 1st, 2025]
- Marylands Quantum Capital Ambitions Rely on UMD Physicist Ronald Walsworth - Source of the Spring - June 1st, 2025 [June 1st, 2025]
- We asked an expert about quantum computer threat as Google and BlackRock ring the alarm - Crypto News - June 1st, 2025 [June 1st, 2025]
- Whats Happening With IONQ Stock? - Trefis - June 1st, 2025 [June 1st, 2025]
- New Startup Sygaldry Aims to Rethink AI Infrastructure With Quantum Hardware - The Quantum Insider - June 1st, 2025 [June 1st, 2025]
- Breaking encryption with a quantum computer just got 20 times easier - New Scientist - May 26th, 2025 [May 26th, 2025]
- D-Wave launches the Advantage2 quantum computer with more than 4,400 qubits - SiliconANGLE - May 26th, 2025 [May 26th, 2025]
- Nvidia in Talks to Invest in Quantum Startup PsiQuantum - The Information - May 19th, 2025 [May 19th, 2025]
- Quantum Computers Just Outsmarted Supercomputers Heres What They Solved - SciTechDaily - May 19th, 2025 [May 19th, 2025]
- Should You Buy IonQ Stock to Ride the Quantum Computing Revolution? The Answer May Surprise You - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- D-Wave Quantum Stock Soaring On 509% Revenue Pop And Growth Prospects - Forbes - May 19th, 2025 [May 19th, 2025]
- Quantum Machines Launches Open-Source Framework that Cuts Quantum Computer Calibration From Hours to Minutes - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Silicon qubits bring scalable quantum computing closer to reality - The Brighter Side of News - May 19th, 2025 [May 19th, 2025]
- Quantum Computers Are Here, but Are Cybersecurity Professionals Ready? - IoT World Today - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Stock Tumbles After Last Week's 50% SurgeWatch These Key Levels - Investopedia - May 19th, 2025 [May 19th, 2025]
- Nvidia in talks to invest in PsiQuantum - Tom's Hardware - May 19th, 2025 [May 19th, 2025]
- Quantum computing: What is quantum error correction (QEC) and why is it so important? - Live Science - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Roadmaps: A Look at The Maps And Predictions of Major Quantum Players - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Stock Surges as Firm Swings to Profit - Investopedia - May 19th, 2025 [May 19th, 2025]
- $850bn by 2040! Should I buy quantum computing stocks for my Stocks and Shares ISA? - Yahoo - May 19th, 2025 [May 19th, 2025]
- France, Germany, and the Netherlands Launch $33M Trilateral Quantum Initiative - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Oxford Quantum Circuits Appoints Former GCHQ Director Sir Jeremy Fleming to Board - HPCwire - May 19th, 2025 [May 19th, 2025]
- Outside the Box: Socratic Machines and Quantum Ghosts - Fair Observer - May 19th, 2025 [May 19th, 2025]
- Preparing for the post-quantum era: a CIOs guide to securing the future of encryption - CyberScoop - May 19th, 2025 [May 19th, 2025]
- Quantum Computing First Quarter 2025 Earnings: EPS Beats Expectations, Revenues Lag - Yahoo Finance - May 19th, 2025 [May 19th, 2025]
- Nvidia in Talks to Invest in Quantum Computing Startup - The Information - May 19th, 2025 [May 19th, 2025]
- IonQ Stock Is Up 294% in the Past Year. Here's My Prediction For What Comes Next - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- Does Billionaire Israel Englander Know Something Wall Street Doesn't? He Sold a Quantum Computing Stock Analysts Say to Buy. - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- From R&D to ROI: The quantum computing revolution starts here - Techcircle - May 19th, 2025 [May 19th, 2025]
- How quantum computers could break RSA encryption and cure Alzheimer's - Interesting Engineering - May 19th, 2025 [May 19th, 2025]
- The race to perfect the quantum computer is on, and UC is helping America hold its lead - University of California - May 15th, 2025 [May 15th, 2025]
- Keysight Quantum Control System Embedded within Fujitsu and RIKENs World-Leading 256-Qubit Quantum Computer - Morningstar - May 15th, 2025 [May 15th, 2025]
- Keysight Technologies, Inc. Quantum Control System Embedded Within Fujitsu and Riken's 256-Qubit Quantum Computer - marketscreener.com - May 15th, 2025 [May 15th, 2025]
- The Worlds First Song Created by Artificial Intelligence Using a Quantum Computer Is HereIt Sounds Nothing Like What You Expect - The Daily Galaxy - May 11th, 2025 [May 11th, 2025]
- Regulation watch: how governments are dealing with the risks of quantum computing - Strategic Risk Global - May 11th, 2025 [May 11th, 2025]
- The age of the hype cycle: why science needs room to breathe - varsity.co.uk - May 11th, 2025 [May 11th, 2025]
- Quantums Double-Edged Sword: Balancing Risk and Readiness - InformationWeek - May 11th, 2025 [May 11th, 2025]
- The Computational Limit of Life May Be Much Higher Than We Thought - Yahoo - May 11th, 2025 [May 11th, 2025]
- BlackRock beefs up quantum compute threat warnings to Bitcoin investors - dlnews.com - May 11th, 2025 [May 11th, 2025]
- From false alarms to real threats: Protecting cryptography against quantum - cio.com - May 11th, 2025 [May 11th, 2025]
- Boosting quantum error correction using AI - Phys.org - May 11th, 2025 [May 11th, 2025]
- Laws governing finance and investment can help to protect society from dangers of quantum computing, study shows - Phys.org - May 11th, 2025 [May 11th, 2025]
- Quantum computing stocks jump after strong results from D-Wave Quantum (QBTS:NYSE) - Seeking Alpha - May 11th, 2025 [May 11th, 2025]
- Listen to the worlds first song made by a quantum computer and AI - The Next Web - May 10th, 2025 [May 10th, 2025]