This Is the Quietest Sound in the Universe – WIRED
The universe, according to quantum mechanics, is built out of probabilities. An electron is neither here nor there but instead has a likelihood of being in multiple locationsmore a cloud of possibilities than a point. An atom zips around at an undefined speed. Physicists have even engineered laser beams to emit an undefined number of photonsnot 1 or 10 or 10,000, but some probability of a range of particles. In the classical world, the closest conceptual cousin is a dice spinning in midair. Before it lands, the dices state is best represented in probabilities for each side.
View more
Such a state of uncertainty is known as a quantum superposition state. Superposition would be absurd if it wasnt experimentally verified. Physicists have observed an electrons location in a state of superposition in thedouble-slit experiment, which reveals how an electron behaves like a wave with an undefined location. Theyve even used quantum superposition to make new-generation devices, fromquantum computers that seek to supercharge computing power to highly sensitive detectors that measuregravitational waves.
View more
But despite the evidence, quantum mechanics and superposition have one major flaw: Their implications contradict human intuition. Objects that we can see around us dont show off these properties. The speed of a car isnt undefined; it can be measured. The sandwich in your hand doesnt have an undefined location. We clearly dont see superpositions in macroscopic objects, says physicist Matteo Fadel of ETH Zrich. We dont seeSchrdingers cats walking around.
Fadel wants to understand where the boundary is between the quantum and classical worlds. Quantum mechanics clearly applies to atoms and molecules, but its unclear how the rules transition into the macroscopic everyday world that we experience. To that end, he and his colleagues have been performing experiments on progressively larger objects looking for that transition. In arecent paper inPhysical Review Letters, they created a superposition state in the most massiveobject to date: a sapphire crystal about the size of a grain of sand. That may not sound very big, but its about 1016 atomshuge compared with materials typically used in quantum experiments, which are at atomic or molecular scale.
Specifically, the experiment focused on vibrations within the crystal. At room temperature, even when an object appears stationary to the naked eye, the atoms that make up the object are actually vibrating, with colder temperatures corresponding to slower vibrations. Using a special refrigerator, Fadels team cooled their crystal to near absolute zerowhich is defined as the temperature at which atoms stop moving entirely. In practice, it is impossible to build a refrigerator that reaches absolute zero, as that would require an infinite amount of energy.
Near absolute zero, the weird rules of quantum mechanics start to apply to vibrations. If you think of a guitar string, you can pluck it to vibrate softly or loudly or at any volume in between. But in crystals cooled to this super-low temperature, the atoms can only vibrate at discrete, set intensities. It turns out that this is because when vibrations get this quiet, sound actually occurs in discrete units known as phonons. You can think of a phonon as a particle of sound, just as a photon is a particle of light. The minimum amount of vibration that any object can harbor is a single phonon.
Fadels group created a state in which the crystal contained a superposition of a single phonon and zero phonons. In a sense, the crystal is in a state where it is still and vibrating at the same time, says Fadel. To do this, they use microwave pulses to make a tiny superconducting circuit produce a force field that they can control with high precision. This force field pushes a small piece of material connected to the crystal to introduce single phonons of vibration. As the largest object to exhibit quantum weirdness to date, it pushes physicists understanding of the interface between the quantum and classical world.
Specifically, the experiment touches on a central mystery in quantum mechanics, known as the measurement problem. According to the most popular interpretation of quantum mechanics, the act of measuring an object in superposition using a macroscopic device (something relatively large, like a camera or a Geiger counter) destroys the superposition. For example, in the double-slit experiment, if you use a device to detect an electron, you dont see it in all of its potential wave positions, but fixed, seemingly at random, at one particular spot.
But other physicists have proposed alternatives to help explain quantum mechanics that do not involve measurement, known as collapse models. These suppose that quantum mechanics, as currently accepted, is an approximate theory. As objects get bigger, some yet undiscovered phenomenon prevents the objects from existing in superposition statesand that it is this, not the act of measuring superpositions, that prevents us from encountering them in the world around us. By pushing quantum superposition to bigger objects, Fadels experiment constrains what that unknown phenomenon can be, says Timothy Kovachy, a professor of physics at Northwestern University who was not involved in the experiment.
The benefits of controlling individual vibrations in crystals extend beyond simply investigating quantum theorythere are practical applications too. Researchers are developing technologies that make use of phonons in objects like Fadels crystal as precise sensors. For example, objects that harbor individual phonons can measure the mass of extremely light objects, says physicist Amir Safavi-Naeini of Stanford University. Extremely light forces can cause changes in these delicate quantum states. For example, if a protein landed on a crystal similar to Fadels, researchers could measure the small changes in the crystals vibration frequency to determine the proteins mass.
In addition, researchers are interested in using quantum vibrations to store information for quantum computers, which store and manipulate information encoded in superposition. Vibrations tend to last relatively long, which make them a promising candidate for quantum memory, says Safavi-Naeini. Sound doesnt travel in a vacuum, he says. When a vibration on the surface of an object or inside it hits a boundary, it just stops there. That property of sound tends to preserve the information longer than in photons, commonly used in prototype quantum computers, although researchers still need to develop phonon-based technology. (Scientists are still exploring the commercial applications of quantum computers in general, but many think their increased processing power could be useful in designing new materials and pharmaceutical drugs.)
In future work, Fadel wants to perform similar experiments on even bigger objects. He also wants to study how gravity might affect quantum states. Physicists theory of gravity describes the behavior of large objects precisely, while quantum mechanics describes microscopic objects precisely. If you think about quantum computers or quantum sensors, they will inevitably be large systems. So it is crucial to understand if quantum mechanics breaks down for systems of larger size, says Fadel.
As researchers delve deeper into quantum mechanics, its weirdness has evolved from a thought experiment to a practical question. Understanding where the boundaries lie between the quantum and the classical worlds will influence the development of future scientific devices and computersif this knowledge can be found. These are fundamental, almost philosophical experiments, says Fadel. But they are also important for future technologies.
Continue reading here:
This Is the Quietest Sound in the Universe - WIRED
- Watch Beyond AI: Inside the Global Quantum Computer Race - Bloomberg.com - November 18th, 2025 [November 18th, 2025]
- What Quantum Computer Makers Will Be Showing at SC25 - HPCwire - November 18th, 2025 [November 18th, 2025]
- Quantum Computing (QUBT) Stock Surges On Q3 Earnings, Company To Unveil Neurawave Computer This Week - Benzinga - November 18th, 2025 [November 18th, 2025]
- First full simulation of 50-qubit universal quantum computer achieved - Phys.org - November 11th, 2025 [November 11th, 2025]
- D-Wave (NYSE: QBTS) Advantage2TM Quantum Computer Now Available for U.S. Government Applications at Davidson Technologies - TradingView - November 11th, 2025 [November 11th, 2025]
- Superconducting Pairing Correlations Measured on Quantum Computer in Three Regimes of Fermi-Hubbard Models - Quantum Zeitgeist - November 11th, 2025 [November 11th, 2025]
- 'This is easily the most powerful quantum computer on Earth': Scientists unveil Helios, a record-breaking quantum system - Live Science - November 10th, 2025 [November 10th, 2025]
- Helios-1: New quantum computer is on the path to unravelling superconductivity - New Scientist - November 10th, 2025 [November 10th, 2025]
- Princeton puts quantum computing on the fast track with new qubit - Princeton University - November 7th, 2025 [November 7th, 2025]
- Here's How Hot Quantum Stocks Have Been LatelyAnd What to Know About Them - Investopedia - November 7th, 2025 [November 7th, 2025]
- SkyWater Technology and QuamCore Announce Collaboration to Fabricate Digital Superconducting Controller for Scalable Quantum Computing - Business Wire - November 7th, 2025 [November 7th, 2025]
- Quantum computing jolted by DARPA decision on most viable companies - Fast Company - November 7th, 2025 [November 7th, 2025]
- Quantum Could Be Techs Next Big Thing. But for Investors, Its All About Timing. - The Wall Street Journal - November 7th, 2025 [November 7th, 2025]
- Silicon Quantum Computing Selected by DARPA to Advance into 2nd Stage of Quantum Benchmarking Initiative - HPCwire - November 7th, 2025 [November 7th, 2025]
- Beyond the Hype: Quantum Computers Start Solving Real Problems - USC Viterbi School of Engineering - November 7th, 2025 [November 7th, 2025]
- Alumnus, leader in quantum computing to deliver inaugural joint colloquium - W&M News - November 7th, 2025 [November 7th, 2025]
- IBM Advances to Next Phase of DARPA Quantum Benchmarking Initiative - PR Newswire - November 7th, 2025 [November 7th, 2025]
- Universal Coupler Promises to Cut the Costs of Photonic Quantum Computers | Business | Nov 2025 - Photonics Spectra - November 7th, 2025 [November 7th, 2025]
- Atom Computing selected by DARPA for the next stage of exploring near-term utility-scale quantum computing with neutral atoms - PR Newswire - November 7th, 2025 [November 7th, 2025]
- Quantum Computing Explained: Unlocking the Future of Quantum Technology and Its Impact - Tech Times - November 7th, 2025 [November 7th, 2025]
- IBM Gets Selected for Stage B of DARPAs Quantum Computing Initiative - TipRanks - November 7th, 2025 [November 7th, 2025]
- Quantum computing: What's all the hype about? - marketplace.org - November 7th, 2025 [November 7th, 2025]
- Quantum Motion Selected by DARPA for Second Phase of the Quantum Benchmarking Initiative - insidehpc.com - November 7th, 2025 [November 7th, 2025]
- DARPAs Quantum Benchmarking Initiative targets utility-scale quantum by 2033 - TechInformed - November 7th, 2025 [November 7th, 2025]
- This Is the Smartest Stock to Buy to Take Advantage of the Quantum Computing Revolution -- and It Isn't IonQ, Rigetti Computing, or D-Wave Quantum -... - November 7th, 2025 [November 7th, 2025]
- Target This Quantum Computing Stock Before Another Rally - Forbes - November 7th, 2025 [November 7th, 2025]
- Singapores National Quantum Office and Quantinuum Forge Strategic Partnership to Accelerate Quantum Computing - The Quantum Insider - November 7th, 2025 [November 7th, 2025]
- SkyWater partners with QuamCore to advance quantum computing - Evertiq - November 7th, 2025 [November 7th, 2025]
- SkyWater Technology And QuamCore Announce Collaboration to Fabricate Digital Superconducting Controller For Scalable Quantum Computing - The Quantum... - November 7th, 2025 [November 7th, 2025]
- Canadas Nord Quantique Selected for 2nd Phase of DARPA Quantum Benchmarking Initiative - HPCwire - November 7th, 2025 [November 7th, 2025]
- Why People Confuse AI with Quantum Computing and Why You Should Care - Investopedia - November 7th, 2025 [November 7th, 2025]
- Exclusive | The Next Big Quantum Computer Has Arrived - The Wall Street Journal - November 7th, 2025 [November 7th, 2025]
- DARPAs Quantum Benchmarking Initiative (QBI) Advances with Eleven Teams Moving to Stage B - Quantum Computing Report - November 7th, 2025 [November 7th, 2025]
- Behold Helios, the Most Powerful Quantum Computer on the Planet - oodaloop.com - November 7th, 2025 [November 7th, 2025]
- The Next Big Quantum Computer Has Arrived - oodaloop.com - November 7th, 2025 [November 7th, 2025]
- Government showcases UK quantum computing pledge - Computer Weekly - November 7th, 2025 [November 7th, 2025]
- Behold Helios, the Most Powerful Quantum Computer on the Planet - Gizmodo - November 7th, 2025 [November 7th, 2025]
- Quantum Computing Stocks: Q3 Earnings Preview - Investor's Business Daily - November 3rd, 2025 [November 3rd, 2025]
- Quantum computers reveal that the wave function is a real thing - New Scientist - November 3rd, 2025 [November 3rd, 2025]
- You Won't Believe What Elon Musk Just Said About Quantum Computing (Spoiler Alert: It's Good News) - Nasdaq - November 3rd, 2025 [November 3rd, 2025]
- The US government announces strategic 'prosperity deals' with Japan and South Korea to 'drive breakthroughs' in AI, quantum computing, and more - PC... - November 3rd, 2025 [November 3rd, 2025]
- Are Quantum Computing Stocks in a Bubble? - The Motley Fool - November 3rd, 2025 [November 3rd, 2025]
- Quantum technology is coming to the real world - Financial Times - November 3rd, 2025 [November 3rd, 2025]
- The Donald Trump Administration May Want Stakes in Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum -- and That May Be Terrible... - November 3rd, 2025 [November 3rd, 2025]
- IBM Stock Is Outperforming Nvidia's This Year. Are Shares a Buy? - The Motley Fool - November 3rd, 2025 [November 3rd, 2025]
- An Epic Reversal Is Coming for Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum, Based on a Time-Tested Indicator - The Motley... - November 3rd, 2025 [November 3rd, 2025]
- Saturday Citations: Test flight of the X-59; a confounding quantum calculation; the universe is not simulated - Phys.org - November 3rd, 2025 [November 3rd, 2025]
- What will change in 2026? Brazil will have its first quantum computer, coming from China with a US$10 million investment. - CPG Click Petrleo e Gs - November 3rd, 2025 [November 3rd, 2025]
- Cloud platforms keep breaking down, and this time its quantum - Cybernews - November 3rd, 2025 [November 3rd, 2025]
- Time to Invest in Quantum Computing Stocks - Cabot Wealth Network - November 3rd, 2025 [November 3rd, 2025]
- Imperial Researchers Win Top Prizes For Quantum-AI Advances - Quantum Zeitgeist - November 3rd, 2025 [November 3rd, 2025]
- Quantum Circuits Harnesses Power of Data to Deliver New Class of Advanced Quantum Computing Solutions with NVIDIA - HPCwire - November 3rd, 2025 [November 3rd, 2025]
- NVIDIA Bridges Classical and Quantum Computing with NVQLink | Business | Oct 2025 - Photonics Spectra - November 3rd, 2025 [November 3rd, 2025]
- 3 Reasons to Buy This Under-the-Radar Quantum Computing Stock Today - Yahoo Finance - October 28th, 2025 [October 28th, 2025]
- What's the Best Quantum Computing Stock to Buy? It Just Became Crystal Clear (Hint: It's Not IonQ). - The Motley Fool - October 28th, 2025 [October 28th, 2025]
- 3 Reasons to Buy This Under-the-Radar Quantum Computing Stock Today - The Motley Fool - October 28th, 2025 [October 28th, 2025]
- Move Over, IonQ, Rigetti Computing, and D-Wave Quantum -- There's a Much Smarter Way to Invest in the Quantum Computing Revolution - Nasdaq - October 28th, 2025 [October 28th, 2025]
- Without Question, These Are the 2 Safest Quantum Computing Stocks to Buy (Hint: Not Rigetti Computing) - The Motley Fool - October 28th, 2025 [October 28th, 2025]
- UC Merced Leads National Effort to Unlock Quantum Secrets of Twisty Molecules - University of California, Merced - October 28th, 2025 [October 28th, 2025]
- Quantum computer demonstrates controlled advantage over supercomputer for the first time - warpnews.org - October 28th, 2025 [October 28th, 2025]
- Quantum Computing Stocks D-Wave, IonQ, and Rigetti Talk With Trump Administration About Equity Stakes. Is It Time to Buy? - The Motley Fool - October 28th, 2025 [October 28th, 2025]
- IBM Stock Surges 8% As It Expands Quantum Computing Capabilities with AMD Chip - TIKR.com - October 28th, 2025 [October 28th, 2025]
- Without Question, These Are the 2 Safest Quantum Computing Stocks to Buy (Hint: Not Rigetti Computing) - Nasdaq - October 28th, 2025 [October 28th, 2025]
- Electrons can now be controlled to build smarter quantum devices - Interesting Engineering - October 28th, 2025 [October 28th, 2025]
- Google announces a breakthrough that could bring quantum computing into everyday life - Dagens.com - October 28th, 2025 [October 28th, 2025]
- Quantum computing may be tech investings next big thing, but picking winners is a challenge - The Globe and Mail - October 28th, 2025 [October 28th, 2025]
- Move Over, IonQ, Rigetti Computing, and D-Wave Quantum -- There's a Much Smarter Way to Invest in the Quantum Computing Revolution - The Motley Fool - October 28th, 2025 [October 28th, 2025]
- Think It's Too Late to Buy IonQ Stock? Here's the 1 Reason Why There's Still Time. - The Motley Fool - October 28th, 2025 [October 28th, 2025]
- QTUM: Capturing The Synergistic Relationship Between Quantum Computing And AI - Seeking Alpha - October 28th, 2025 [October 28th, 2025]
- IonQ (IONQ): Evaluating Valuation After U.S. Government Interest and Quantum Computing Breakthroughs - simplywall.st - October 28th, 2025 [October 28th, 2025]
- Tech in 2035: The Future of AI, Quantum, and Space Innovation - DirectIndustry e-Magazine - October 28th, 2025 [October 28th, 2025]
- Commentary: China is closing the quantum technology gap - CNA - October 26th, 2025 [October 26th, 2025]
- How quantum computing could become the next frontier in national security - MarketWatch - October 26th, 2025 [October 26th, 2025]
- IBM says conventional AMD chips can run quantum computing error correction algorithm - Reuters - October 26th, 2025 [October 26th, 2025]
- Exclusive | Trump Administration in Talks to Take Equity Stakes in Quantum-Computing Firms - The Wall Street Journal - October 26th, 2025 [October 26th, 2025]
- This Quantum Computing Stock Is Up 3,000% Over the Last Year, and the CEO Just Cashed Out. Are Retail Investors Fueling a Bubble? - AOL.com - October 26th, 2025 [October 26th, 2025]
- AMD Stock Surges on IBM Quantum Partnership and Major AI Deals - CoinCentral - October 26th, 2025 [October 26th, 2025]
- Quantum Teleportation Was Achieved Over The Internet For The First Time - Currently.com - October 26th, 2025 [October 26th, 2025]
- IBM's boffins run a nifty quantum error-correction algorithm on standard AMD FPGAs, and it is' 10 times faster than what is needed' research propels... - October 26th, 2025 [October 26th, 2025]
- Googles quantum computer just achieved a massive breakthrough: Verifiable Quantum Advantage - Chrome Unboxed - October 26th, 2025 [October 26th, 2025]