The future of scientific research is quantum – The Next Web
Over the past few years, the capabilities of quantum computers have reached the stage where they can be used to pursue research with widespread technological impact. Through their research, the Q4Q team at the University of Southern California, University of North Texas, and Central Michigan University, explores how software and algorithms designed for the latest quantum computing technologies can be adapted to suit the needs of applied sciences. In a collaborative project, the Q4Q team sets out a roadmap for bringing accessible, user-friendly quantum computing into fields ranging from materials science, to pharmaceutical drug development.
Since it first emerged in the 1980s, the field of quantum computing has promised to transform the ways in which we process information. The technology is centered on the fact that quantum particles such as electrons exist in superpositions of states. Quantum mechanics also dictates that particles will only collapse into one single measurable state when observed by a user. By harnessing these unique properties, physicists discovered that batches of quantum particles can act as more advanced counterparts to conventional binary bits which only exist in one of two possible states (on or off) at a given time.
On classical computers, we write and process information in a binary form. Namely, the basic unit of information is a bit, which takes on the logical binary values 0 or 1. Similarly, quantum bits (also known as qubits) are the native information carriers on quantum computers. Much like bits, we read binary outcomes of qubits, that is 0 or 1 for each qubit.
However, in a stark contrast to bits, we can encode information on a qubit in the form of a superposition of logical values of 0 and 1. This means that we can encode much more information in a qubit than in a bit. In addition, when we have a collection of qubits, the principle of superposition leads to computational states that can encode correlations among the qubits, which are stronger than any type of correlations achieved within a collection of bits. Superposition and strong quantum correlations are, arguably, the foundations on which quantum computers rely on to provide faster processing speeds than their classical counterparts.
To realize computations, qubit states can be used in quantum logic gates, which perform operations on qubits, thus transforming the input state according to a programmed algorithm. This is a paradigm for quantum computation, analogous to conventional computers. In 1998, both qubits and quantum logic gates were realized experimentally for the first time bringing the previously-theoretical concept of quantum computing into the real world.
From this basis, researchers then began to develop new software and algorithms, specially designed for operations using qubits. At the time, however, the widespread adoption of these techniques in everyday applications still seemed a long way off. The heart of the issue lay in the errors that are inevitably introduced to quantum systems by their surrounding environments. If uncorrected, these errors can cause qubits to lose their quantum information, rendering computations completely useless. Many studies at the time aimed to develop ways to correct these errors, but the processes they came up with were invariably costly and time-consuming.
Unfortunately, the risk of introducing errors to quantum computations increases drastically as more qubits are added to a system. For over a decade after the initial experimental realization of qubits and quantum logic gates, this meant that quantum computers showed little promise in rivalling the capabilities of their conventional counterparts.
In addition, quantum computing was largely limited to specialized research labs, meaning that many research groups that could have benefited from the technology were unable to access it.
While error correction remains a hurdle, the technology has since moved beyond specialized research labs, becoming accessible to more users. This occurred for the first time in 2011, when the first quantum annealer was commercialized. With this event, feasible routes emerged towards reliable quantum processors containing thousands of qubits capable of useful computations.
Quantum annealing is an advanced technique for obtaining optimal solutions to complex mathematical problems. It is a quantum computation paradigm alternative to operating on qubits with quantum logic gates.
The availability of commercial quantum annealers spurned a new surge in interest for quantum computing, with consequent technological progress, especially fueled by industrial capitals. In 2016, this culminated in the development of a new cloud system based on quantum logic gates, which enabled owners and users of quantum computers around the world to pool their resources together, expanding the use of the devices outside of specialized research labs. Before long, the widespread use of quantum software and algorithms for specific research scenarios began to look increasingly realistic.
At the time, however, the technology still required high levels of expertise to operate. Without specific knowledge of the quantum processes involved, researchers in fields such as biology, chemistry, materials science, and drug development could not make full use of them. Further progress would be needed before the advantages of quantum computing could be widely applied outside the field of quantum mechanics itself.
Now, the Q4Q team aims to build on these previous advances using user-friendly quantum algorithms and software packages to realize quantum simulations of physical systems. Where the deeply complex properties of these systems are incredibly difficult to recreate within conventional computers, there is now hope that this could be achieved using large systems of qubits.
To recreate the technologies that could realistically become widely available in the near future, the teams experiments will incorporate noisy intermediate-scale quantum (NISQ) devices which contain relatively large numbers of qubits, and by themselves are prone to environmental errors.
In their projects, the Q4Q team identifies three particular aspects of molecules and solid materials that could be better explored through the techniques they aim to develop. The first of these concerns the band structures of solids which describe the range of energy levels that electrons can occupy within a solid, as well as the energies they are forbidden from possessing.
Secondly, they aim to describe the vibrations and electronic properties of individual molecules each of which can heavily influence their physical properties. Finally, the researchers will explore how certain aspects of quantum annealing can be exploited to realize machine-learning algorithms which automatically improve through their experience of processing data.
As they apply these techniques, the Q4Q team predicts that their findings will lead to a better knowledge of the quantum properties of both molecules and solid materials. In particular, they hope to provide better descriptions of periodic solids, whose constituent atoms are arranged in reliably repeating patterns.
Previously, researchers struggled to reproduce the wavefunctions of interacting quantum particles within these materials, which relate to the probability of finding the particles in particular positions when observed by a user. Through their techniques, the Q4Q team aims to reduce the number of qubits required to capture these wavefunctions, leading to more realistic quantum simulations of the solid materials.
Elsewhere, the Q4Q team will account for the often deeply complex quantum properties of individual molecules made up of large groups of atoms. During chemical reactions, any changes taking place within these molecules will be strongly driven by quantum processes, which are still poorly understood. By developing plugins to existing quantum software, the team hopes to accurately recreate this quantum chemistry in simulated reactions.
If they are successful in reaching these goals, the results of their work could open up many new avenues of research within a diverse array of fields especially where the effects of quantum mechanics have not yet been widely considered. In particular, they will also contribute to identifying bottlenecks of current quantum processing units, which will aid the design of better quantum computers.
Perhaps most generally, the Q4Q team hopes that their techniques will enable researchers to better understand how matter responds to external perturbations, such as lasers and other light sources.
Elsewhere, widely accessible quantum software could become immensely useful in the design of new pharmaceutical drugs, as well as new fertilizers. By ascertaining how reactions between organic and biological molecules unfold within simulations, researchers could engineer molecular structures that are specifically tailored to treating certain medical conditions.
The ability to simulate these reactions could also lead to new advances in the field of biology as a whole, where processes involving large, deeply complex molecules including proteins and nucleic acids are critical to the function of every living organism.
Finally, a better knowledge of the vibrational and electronic properties of periodic solids could transform the field of materials physics. By precisely engineering structures to display certain physical properties on macroscopic scales, researchers could tailor new materials with a vast array of desirable characteristics: including durability, advanced interaction with light, and environmental sustainability.
If the impacts of the teams proposed research goals are as transformative as they hope, researchers in many different fields of the technological endeavor could soon be working with quantum technologies.
Such a clear shift away from traditional research practices could in turn create many new jobs with required skillsets including the use of cutting-edge quantum software and algorithms. Therefore, a key element of the teams activity is to develop new strategies for training future generations of researchers. Members of the Q4Q team believe that this will present some of the clearest routes yet towards the widespread application of quantum computing in our everyday lives.
This article was authored by the Q4Q team, consisting of lead investigator Rosa Di Felice, Anna Krylov, Marco Fornari, Marco Buongiorno Nardelli, Itay Hen and Amir Kalev, in Scientia. Learn more about the team, and find the original article here.
See the article here:
The future of scientific research is quantum - The Next Web
- Fields medalist: As of today we have no quantum computer. It does not exist. - Network World - October 9th, 2025 [October 9th, 2025]
- 3 Quantum Computing Stocks That Could Make a Millionaire - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Discoveries behind quantum computers win the Nobel Prize in physics - Science News Explores - October 9th, 2025 [October 9th, 2025]
- Discoveries that enabled quantum computers win the Nobel Prize in physics - Science News - October 9th, 2025 [October 9th, 2025]
- Library exhibit marks 100 years since quantum theory revolution - northernstar.info - October 9th, 2025 [October 9th, 2025]
- Harvard team builds quantum computer that runs continuously for over two hours - Digital Watch Observatory - October 9th, 2025 [October 9th, 2025]
- Trio win Nobel prize for revealing quantum physics in action - Reuters - October 9th, 2025 [October 9th, 2025]
- Advances in quantum error correction showcased at Q2B25 - Physics World - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in physics awarded to 3 University of California faculty - University of California - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in Physics goes to early research that led to todays quantum computers - The Verge - October 9th, 2025 [October 9th, 2025]
- Nobel in physics awarded to scientists showing quantum mechanics on macro scale - The Washington Post - October 9th, 2025 [October 9th, 2025]
- 3 scientists at US universities win Nobel Prize in physics for advancing quantum technology - ABC7 Los Angeles - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in physics goes to three scientists who discovered bizarre quantum effect on large scales - Live Science - October 9th, 2025 [October 9th, 2025]
- Trio who made foundational quantum computing discovery bag Nobel physics prize - theregister.com - October 9th, 2025 [October 9th, 2025]
- Clarke, Devoret, and Martinis Awarded Nobel Prize in Physics for Macroscopic Quantum Discoveries - Quantum Computing Report - October 9th, 2025 [October 9th, 2025]
- Macroscopic quantum tunneling wins 2025s Nobel Prize in physics - Big Think - October 9th, 2025 [October 9th, 2025]
- The time to invest in quantum is now - PwC - October 7th, 2025 [October 7th, 2025]
- Nokia bets on sovereign quantum-safe connectivity - Light Reading - October 7th, 2025 [October 7th, 2025]
- ChattState and UTC Partner With Chattanooga Quantum Collaborative on $1.33M NSF Grant to Protect the Nations Power Grid + Build Quantum Workforce... - October 7th, 2025 [October 7th, 2025]
- Rigetti Computing: I Caught The Falling Knife, And My Hand Never Felt Better! (RGTI) - Seeking Alpha - October 7th, 2025 [October 7th, 2025]
- Quantum Computing Inc. Announces $750 Million Oversubscribed Private Placement of Common Stock Priced at the Market Under Nasdaq Rules - The Quantum... - October 7th, 2025 [October 7th, 2025]
- Investing in Quantum Computing: How IONQ, QUBT, RGTI & QBTS Stocks Are Revolutionizing Technology and Climate Solutions - CarbonCredits.com - October 7th, 2025 [October 7th, 2025]
- Quantum City to Host Annual Summit to Tackle Tech Adoption in a Changing World - The Quantum Insider - October 7th, 2025 [October 7th, 2025]
- D-Wave Quantum (QBTS) Soars to New High on Real-World Quantum Computer Significance - MSN - October 7th, 2025 [October 7th, 2025]
- Rigettis $13 Billion Quantum Leap Stock Hits Record High on Big Deals, But Is the Hype Real? - ts2.tech - October 7th, 2025 [October 7th, 2025]
- Invest in quantum adoption now to be a winner in the quantum revolution - Data Center Dynamics - October 7th, 2025 [October 7th, 2025]
- Quantum Stocks Are Surging: Time to Load Up on D-Wave, or Is IonQ the Safer Bet? - 24/7 Wall St. - October 7th, 2025 [October 7th, 2025]
- Quantum Leap or Speculative Bubble? Wall Street Bets Big on the Future of Computing - FinancialContent - October 7th, 2025 [October 7th, 2025]
- Quantum and Semiconductor Stocks: Future Investment Opportunities - - October 7th, 2025 [October 7th, 2025]
- Were scaling quantum computing even faster with Atlantic Quantum. - The Keyword - October 4th, 2025 [October 4th, 2025]
- Investing in These 3 Quantum Computing Stocks Could Be a Once-in-a-Lifetime Opportunity - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- Quantum Computing Stock Could Rise 67%, Says Analyst. Heres Why. - Barron's - October 4th, 2025 [October 4th, 2025]
- Harvard researchers hail quantum computing breakthrough with machine that can run for two hours atomic loss quashed by experimental design, systems... - October 4th, 2025 [October 4th, 2025]
- Groundbreaking of Illinois Quantum and Microelectronics Park creates anchor for quantum innovation - University of Chicago News - October 4th, 2025 [October 4th, 2025]
- IonQ Hit Major Quantum Computer Milestone Earlier Than ExpectedTime to Buy? - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- Is quantum computing poised for another breakthrough? - IT Brew - October 4th, 2025 [October 4th, 2025]
- Rigetti Computing (RGTI): Can This Top Quantum Computing Stock 3X in 3 Years? - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- Investing in These 3 Quantum Computing Stocks Could Be a Once-in-a-Lifetime Opportunity - The Motley Fool - October 4th, 2025 [October 4th, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 10/3/2025 - TipRanks - October 4th, 2025 [October 4th, 2025]
- Billionaires Are Piling Into a Quantum Computing Stock That Gained Over 3,700% in the Past Year - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- Rigetti Computing (RGTI): Can This Top Quantum Computing Stock 3X in 3 Years? - AOL.com - October 4th, 2025 [October 4th, 2025]
- Rigetti, D-Wave, and other quantum computing stocks are leaping again: How high will they go? - Fast Company - October 4th, 2025 [October 4th, 2025]
- Quantum computing is having a moment in the stock market - MSN - October 4th, 2025 [October 4th, 2025]
- Quantum Computing Stocks: The Next Big Move for D-Wave, IonQ, and Rigetti - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- The Question One Should Always Ask When They Hear a Quantum Advantage Claim - Quantum Computing Report - October 4th, 2025 [October 4th, 2025]
- IBM: Navigating the Hybrid Cloud, AI, and Quantum Frontier (October 2025) - FinancialContent - October 4th, 2025 [October 4th, 2025]
- Quantum Computing (QUBT) Is Down 11.4% After Oversubscribed Funding and New Photonic Tech Debut Whats Changed - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- DARPA Selects PsiQuantum To Advance To Final Phase Of Quantum Computing Program - Quantum Zeitgeist - October 4th, 2025 [October 4th, 2025]
- 5 Nobel-worthy scientific advances that havent won the prize - Local 3 News - October 4th, 2025 [October 4th, 2025]
- Scientists create the next-generation of secure quantum communication - The Brighter Side of News - October 4th, 2025 [October 4th, 2025]
- Researchers Claim First Unconditional Proof of Quantum Advantage. What Happens Next? - Gizmodo - October 2nd, 2025 [October 2nd, 2025]
- Harvard Researchers Develop First Ever Continuously Operating Quantum Computer - The Harvard Crimson - October 2nd, 2025 [October 2nd, 2025]
- Spooky action at a distance a beginners guide to quantum entanglement and why it matters in the real world - The Conversation - October 2nd, 2025 [October 2nd, 2025]
- Quantum error correction near the coding theoretical bound - Nature - October 2nd, 2025 [October 2nd, 2025]
- Just Out Of The Lab: A Cat Qubit That Jumps Every Hour - Alice & Bob - Quantum Zeitgeist - October 2nd, 2025 [October 2nd, 2025]
- Quantum Brilliance Makes Devices That Keep Their Cool - EE Times - October 2nd, 2025 [October 2nd, 2025]
- PsiQuantum Breaks Ground on Americas Largest Quantum Computing Project in Chicago - Business Wire - October 2nd, 2025 [October 2nd, 2025]
- D-Wave to Participate in Quantum Beach Conference, Highlighting Companys Leadership in the Commercialization of Quantum Computing - The Globe and Mail - October 2nd, 2025 [October 2nd, 2025]
- Post-Quantum Encryption: The VPN Buzzword You Should Actually Care About - PCMag - October 2nd, 2025 [October 2nd, 2025]
- Scientists Say Weve Finally Reached Quantum Supremacy. For Real This Time! - Popular Mechanics - September 30th, 2025 [September 30th, 2025]
- 'A real physical thing': Quantum computer exhibit at O'Hare seeks to make the technology tangible - Phys.org - September 30th, 2025 [September 30th, 2025]
- Quantum chips just proved theyre ready for the real world - ScienceDaily - September 30th, 2025 [September 30th, 2025]
- IBM's Quantum Computers Just Beat Wall Street At Its Own Game - Yahoo Finance - September 30th, 2025 [September 30th, 2025]
- Fujitsu and AIST sign collaboration agreement to strengthen international industrial competitiveness in quantum technology - Fujitsu Global - September 30th, 2025 [September 30th, 2025]
- Like Talking on the Telephone Quantum Breakthrough Lets Individual Atoms Chat Like Never Before - SciTechDaily - September 30th, 2025 [September 30th, 2025]
- Scientists Say Weve Finally Reached Quantum Supremacy. For Real This Time! - MSN - September 30th, 2025 [September 30th, 2025]
- IBM's Quantum Computers Just Beat Wall Street At Its Own Game - The Motley Fool - September 30th, 2025 [September 30th, 2025]
- Prediction: This Quantum-AI Stock Could Be the Nvidia of the 2030s - Yahoo Finance - September 30th, 2025 [September 30th, 2025]
- GPT-5 helps define strict limits in quantum error reduction theory - Interesting Engineering - September 30th, 2025 [September 30th, 2025]
- Fujitsu and AIST partner to strengthen international industrial competitiveness in quantum technology - Robotics & Automation News - September 30th, 2025 [September 30th, 2025]
- Meet the Monster Quantum Computing Stock That Continues to Crush Nvidia, Oracle, and Palantir - Yahoo Finance - September 30th, 2025 [September 30th, 2025]
- IBM partners with AMD to develop architectures for quantum-centric supercomputing - Robotics & Automation News - September 30th, 2025 [September 30th, 2025]
- Bond Trading, Quantum Bond Trading: A Deeper Look at HSBC And IBM's Bond Trading Study - The Quantum Insider - September 30th, 2025 [September 30th, 2025]
- Why Quantum Computing Stock Stumbled This Week - Yahoo Finance - September 28th, 2025 [September 28th, 2025]
- Sam Altman says that if GPT-8 were to solve quantum gravity OpenAI would have achieved true AGI - Windows Central - September 28th, 2025 [September 28th, 2025]
- The Zacks Analyst Blog Highlights IonQ, Rigetti Computing and D-Wave Quantum - Nasdaq - September 28th, 2025 [September 28th, 2025]
- Cisco quantum networking with Vijoy Pandey and Reza Nejabati - The Quantum Insider - September 28th, 2025 [September 28th, 2025]
- Prediction: This Quantum-AI Stock Could Be the Nvidia of the 2030s - The Motley Fool - September 28th, 2025 [September 28th, 2025]
- SC Ventures And Fujitsu Join Forces to Incubate Project Quanta - The Quantum Insider - September 28th, 2025 [September 28th, 2025]
- Chip-scale cold atom and trapped ion experiments can unleash the power of quantum science in the field - UC Santa Barbara - September 28th, 2025 [September 28th, 2025]