The End Of The Digital Revolution Is Coming: Here’s What’s Next – Innovation Excellence
by Tom Koulopoulos
The next era of computing will stretch our minds into a spooky new world that were just starting to understand.
In 1946 the Electronic Numerical Integrator and Computer, or the ENIAC, was introduced. The worlds first commercial computer was intended to be used by the military to project the trajectory of missiles, doing in a few seconds what it would otherwise take a human mathematician about three days. Its 20,000 vacuum tubes (the glowing glass light bulb-like predecessors to the transistor) connected by 500,000 hand soldered wires were a marvel of human ingenuity and technology.
Imagine if it were possible to go back to the developers and users of that early marvel and make the case that in 70 years there would be ten billion computers worldwide and half of the worlds population would be walking around with computers 100,000,000 times as powerful as the ENIAC in their pants pockets.
Youd have been considered a lunatic!
I want you to keep that in mind as you resist the temptation to do the same to me because of what Im about to share.
Quantum Supremacy
Digital computers will soon reach the limits of demanding technologies such as AI. Consider just the impact of these two projection: by 2025 driverless cars alone may produce as much data as exists in the entire world today; fully digitizing every cell in the human body would exceed ten times all of the data stored globally today. In these and many more cases we need to find ways to deal with unprecedented amounts of data and complexity. Enter quantum computing.
Youve likely heard of quantum computing. Amazingly, its a concept as old as digital computers. However, you may have discounted it as a far off future thats about as relevant to your life as flying cars. Well, it may be time to reconsider. Quantum computing is progressing at a rate that is surprising even those who are building it.
Understanding what quantum computers are and how they work challenges much of what we know of not just computing, but the basics of how the physical world appears to operate. Quantum mechanics, the basis for quantum computing, describes the odd and non-intuitive way the universe operates at a sub-atomic level. Its part science, part theory, and part philosophy.
Classical digital computers use what are called bits, something most all of us are familiar with. A bit can be a one or a zero. Quantum computers use what are called qubits (quantum bits). A quibit can also be a one or a zero but it can also be an infinite number of possibilities in between the two. The thing about qubits is that while a digital bit is always either on (1) or off (0), a qubit is always in whats called a superposition state, neither on nor off.
Although its a rough analogy, think of a qubit as a spinning coin thats just been flipped in the dark. While its spinning is it heads or tails? Its at the same time both and neither until it stops spinning and we then shine a light on it. However, a binary bit is like a coin that has a switch to make it glow in the dark. If I asked you Is it glowing? there would only be two answers, yes or no, and those would not change as it spins.
Thats what a qubit is like when compared to a classical digital bit. A quibit does not have a state until you effectively shine a light on it, while a binary bit maintains its state until that state is manually or mechanically changed.
Dont get too hung up on that analogy because as you get deeper into the quantum world trying to use what we know of the physical world is always a very rough and ultimately flawed way to describe the way things operate at the quantum level of matter.
However, the difficulty in understanding how quantum computers works hasnt stopped their progress. Google engineers recently talked about how the quantum computers they are building are progressing so fast that that they may achieve the elusive goal of whats called quantum supremacy (the point at which quantum computers can exceed the ability of classical binary computer) within months. While that may be a bit of stretch, even conservative projections put us on a 5-year timeline for quantum supremacy.
Quantum vs Classical Computing
Quantum computers, which are built using these qubits, will not replace all classical digital computers, but they will become an indispensable part of how we use computers to model the world and to integrate artificial intelligence into our lives.
Quantum computing will be one of the most radical shifts in the history of science, likely outpacing any advances weve seen to date with prior technological revolutions, such as the advent of semiconductors. They will enable us to take on problems that would take even the most powerful classical supercomputers millions or even billions of years to solve. Thats not just because quantum computers are faster but because they can approach problem solving with massive parallelism using the qualities of how quantum particles behave.
The irony is that the same thing that makes quantum computers so difficult to understand, their harnessing of natures smallest particles, also gives them the ability to precisely simulate the biological world at its most detailed. This means that we can model everything from chemical reactions, to biology, to pharmaceuticals, to the inner workings of the universe, to the spread of pandemics, in ways that were simply impossible with classical computers.
A Higher Power
The reason for the all of the hype behind the rate at which quantum computers are evolving has to do with whats called doubly exponential growth.
The exponential growth that most of us are familiar with, and which is being talked about lately, refers to the classical doubling phenomenon. For example, Moores law, which projects the doubling in the density of transistors on a silicon chip every 18 months. Its hard to wrap our linear brains around exponential growth, but its nearly impossible to wrap them around doubly exponential growth.
Doubly exponential growth simply has no analog in the physical world. Doubly exponential growth means that you are raising a number to a power and then raising that to another power. It looks like this 510^10.
What this means is that while a binary computer can store 256 states with 8 bits (28), a quantum computer with eight qubits (recall that a qubit is the conceptual equivalent of a digital bit in a classical computer) can store 1077 bits of data! Thats a number with 77 zeros, or, to put it into perspective, scientists estimate that there are 1078 atoms in the entire visible universe.
Even Einstein had difficulty with entanglement calling it, spooky action at a distance.
By the way, just to further illustrate the point, if you add one more qubit the number of bits (or more precisely, states) that can be stored just jumped to 10154 (one more bit in a classical computer would only raise the capacity to 1078).
Heres whats really mind blowing about quantum computing (as if what we just described isnt already mind-blowing enough.) A single caffeine molecule is made up of 24 atoms and it can have 1048 quantum states (there are only 1050 atoms that make up the Earth). Modeling caffeine precisely is simply not possible with classical computers. Using the worlds fastest super computer it would take 100,000,000,000,000 times the age of the universe to process the 1048 calculations that represent all of the possible states of a caffeine molecule!
So, the obvious question is, How could any computer, quantum or otherwise, take on something of that magnitude? Well, how does nature do it? That cup of coffee youre drinking has trillions of caffeine molecules and nature is doing just fine handling all of the quantum states they are in. Since nature is a quantum machine what better way to model it than a quantum computer?
Spooky Action
The other aspect of quantum computing that challenges our understanding of how the quantum world works is whats called entanglement. Entanglement describes a phenomenon in which two quantum particles are connected in such a way that no matter how great the distance between them they will both have the same state when they are measured.
At first blush that doesnt seem to be all that novel. After all, if I were to paint two balls red and then separate them by the distance of the universe, both would still be red. However, the state of a quantum object is always in whats called a superposition, meaning that it has no inherent state. Think of our coin flip example from earlier where the coin is in a superposition state until it stops spinning.
If instead of a color its two states were up or down it would always be in both states while also in neither state, that is until an observation or measurement forces it to pick a state. Again, think back to the spinning coin.
Now imagine two coins entangled and flipped simultaneously at different ends of the universe. Once you stop the spin of one coin and reveal that its heads the other coin would instantly stop spinning and also be heads.
If this makes your head hurt, youre in good company. Even Einstein had difficulty with entanglement calling it, spooky action at a distance. His concern was that the two objects couldnt communicate at a speed faster than the speed of light. Whats especially spooky about this phenomenon is that the two objects arent communicating at all in any classical sense of the term communication.
Entanglement creates the potential for all sorts of advances in computing, from how we create 100 percent secure communications against cyberthreats, to the ultimate possibility of teleportation.
Room For Possibility
So, should you run out a buy a quantum computer? Well, its not that easy. Qubits need to be super cooled and are exceptionally finicky particles that require an enormous room-sized apparatus and overhead. Not unlike the ENIAC once did.
You can however use a quantum computer for free or lease its use for more sophisticated applications For example, IBMs Q, is available both as an open source learning environment for anyone as well as a powerful tool for fintech users. However, Ill warn you that even if youre accustomed to programming computers, it will still feel as though youre teaching yourself to think in an entirely foreign language.
The truth is that we might as well be surrounded by 20,000 glowing vacuum tubes and 500,000 hand soldered wires. We can barely imagine what the impact of quantum computing will be in ten to twenty years. No more so than the early users of the ENIAC could have predicted the mind-boggling ways in which we use digital computers today.
Listen in to my two podcasts with scientists from IBM, MIT, and Harvard to find out more about quantum computing. Quantum Computing Part I, Quantum Computing Part II
This article was originally published on Inc.
Image credit: Pixabay
Choose how you want the latest innovation content delivered to you:
Tom Koulopoulos is the author of 10 books and founder of the Delphi Group, a 25-year-old Boston-based think tank and a past Inc. 500 company that focuses on innovation and the future of business. He tweets from @tkspeaks.
Read more:
The End Of The Digital Revolution Is Coming: Here's What's Next - Innovation Excellence
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]