That flawed diamond could be a quantum physicist’s best friend – Princeton University
Shoppers like flawless diamonds, but for quantum physicists, the flaws are the best part.
Senior Elisabeth Rlke has spent the past year using lasers and flawed diamonds tiny wafers of diamond with flaws the size of a single atom to develop a quantum sensor.
The clear wafer at the center of the equipment is a diamond plate, precisely manufactured to be 2 mm on a side and .3 mm thick, with atomic-sized flaws at which Rlke and her adviser Nathalie de Leon shine green and orange lasers.
Photo by
David Kelly Crow for the Office of Engineering Communications
Unlike quantum computers, which are still more theoretical than practical, quantum sensors are already in use. Rlke and her adviser, quantum physicist Nathalie de Leon, are working on a new approach to quantum sensing that depends on using two of these single-atom defects simultaneously.
Because they are so, so small, you could begin to map and sense things on a scale that has never been feasible before, said Rlke, a physics concentrator pursuing a certificate in applied and computational mathematics. It would be revolutionary to chemistry, biology and especially medical devices.
Working with very bright students like Elisabeth is always just a privilege, said de Leon, an associate professor of electrical and computer engineering who is associated faculty in the physics department. She brings a fresh perspective and a different take on things, and that brought a little more creativity on the project than I think would have happened otherwise. Im lucky to be at Princeton and get these really great students knocking on my door.
Rlke knew before she came to Princeton that she wanted to study physics and astronomy, but she also knew that she wanted to take full advantage of the liberal arts. I have taken courses in history, philosophy, religion, entrepreneurship, film, art and others, and I believe it has been a cornerstone of my Princeton experience. The wonderful part about Princetons liberal arts education is that it allows you to take classes in a range of subjects, meaning that what you choose to major in isnt the only focus of your education, as is the case with most British universities and a strong reason why I wanted to study in the U.S., said Rlke, who was born and raised in London.
I do think that there is overlap in the critical and creative thinking used in both higher-level physics and mathematics courses and the humanities subjects, she added.
When Princeton closed its campus to in-person instruction in March of Rlkes first year, she went home to London for Zoom classes. That summer, when travel restrictions eased, she and a Princeton classmate moved into an apartment in Rome. I took an art history class that fall, and it was amazing, Rlke said. I remember one assignment asked us to go find art wherever you are. Most of my classmates looked at, like, a teapot from their house, and I chose a Bernini sculpture.
After she returned to campus, she decided to focus her first junior paper on a truly enormous question: the nature of dark energy in the universe.
She hadnt had a course in general relativity, she hadnt had a course in cosmology, and she wasnt daunted at all, said Paul Steinhardt, Princetons Albert Einstein Professor in Science and a professor of physics who was her adviser on that paper. It was clearly a stretch for her, but she was just full of energy and enthusiasm. I really enjoy seeing a student stretching and learning, and that certainly characterized Elisabeth. She broke her leg that semester, but she still always came to our weekly meetings with enthusiasm and cheer and lots of great research questions.
After they worked together on that paper, Steinhardt served as the second reader on Rlkes second junior paper, then reprised that role for her senior thesis. Ill have read all her theses by the time were through, he said.
Rlke came to Princeton knowing she wanted to immerse herself in STEM science, technology, engineering and mathematics and specifically in physics and astronomy.
The Princeton astrophysics and physics departments are absolutely amazing, she said. I feel so lucky. When I visited Princeton after I got in, I went to go see Einsteins old classroom and walked to his house, which is near campus.
In the lab, Rlkeperforms a confocal scan to locate NV centers in a diamond lattice.
Photo by
Denise Applewhite, Office of Communications
After tackling theoretical cosmology for her first independent research project, she wanted to try something more hands-on, so she did her second junior paper on plasma propulsion. Both were very, very interesting. The first one was very theoretical, and the second was almost too experimental, she said. I was actually climbing into a thrust tank with tools and tinkering with stuff in there. So for my thesis, I wanted something in the middle.
Her broad perspective has served Rlke well as she tackles quantum sensing, a problem that has brought together professors from physics, chemistry and engineering with the goal of tackling a large range of problems, from biophysics and biomedical applications to condensed matter physics and designing new navigational sensors.
The general ethos of my research group is to try to see problems without any borders as much as possible, said de Leon. Our approach to problems tends to start with, What does it take to solve this? We have all of physics and all of chemistry and all of materials engineering all the tools of humanity so lets see if we can MacGyver our way to a solution. Elisabeth definitely fit in like a fish in water.
Diamonds are made of pure carbon, as are charcoal and the graphite in pencils. But you can write with pencils (and charcoal) because those carbon atoms are organized in sheets that slide apart with the barest pressure, leaving marks behind.
The carbon atoms in a diamond, by contrast, have been forced together with tremendous pressure, crowding the atoms together in a perfect and complex web. This allows for another unique property: when a nitrogen atom pushes in and displaces two carbon atoms, it creates a tiny defect called a nitrogen vacancy center or NV center.
NV centers behave like tiny compass needles and have been used in quantum sensors that can measure magnetic fields. While quarantining at home during the COVID pandemic, de Leon began wondering what would happen if there were two NV centers, precisely separated within a diamond chip.
It turns out that while its much, much harder to measure two nitrogen vacancies simultaneously, once you do, you can measure new physical quantities, namely correlations in the magnetic field in space and time. With simultaneous measurements of two NV centers, a whole new world of nanoscale measurements is possible, de Leon said.
This is a fundamentally new thing, she said. The world is our oyster. We can use this new technique that measures a completely new physical quantity. So lets clean up! Lets go look at everything that people were trying to do in the 80s and then just got stuck because they didnt have the right tool. Maybe theres some really cool physics that we can learn. That's where Elisabeth comes in.
The voyage from pandemic inspiration to simultaneously measuring two NV centers took years. De Leon and a postdoc in her lab, Jared Rovny, spent 18 months working out the math and longer than that to figure out how to build a tool that lets you shine lasers at two atomic-sized objects and then count the photons flying out. They first demonstrated this technique with a resolution of 500 nanometers. (For comparisons sake, the period at the end of this sentence is about a million nanometers across.) Rlkes senior thesis has focused on improving this resolution from 500 nanometers down to 10 nm or maybe even a single nanometer.
Rlke credits her coursework and her independent research projects at the University with developing her ability to navigate uncertainty and face challenges head-on.
I remember a three-hour physics exam that only had two questions. You have to spend so much time grasping around in the darkness, trying to think of how to do this, which method to start with and building the skills to do that makes you a person with the ability to think really critically and not be afraid if youre going head-on to a problem where you cant really see the end or you dont really know how to solve it.
In high school, I hated those sorts of problems, she said. I liked getting to the answer and getting it right. That growth happened at Princeton.
She and de Leon both enjoyed their weekly thesis advising sessions.
I have enough autonomy to decide what exactly I want to do, Rlke said. But de Leon also provides enough help to make sure that I have the right background knowledge.
She always shows up at my office extremely sunny and very enthusiastic, de Leon said of Rlke. I dont know where she gets all that energy. Even if its the middle of midterm season or application season, she still just shows up and is like, Okay, heres what Ive done. Look at all my data. Lets discuss it. Heres my plan. I think this thing is really interesting.
1
Rlke and her thesis adviser, quantum physicist Nathalie de Leon (right), are measuring two nitrogen vacancy centers simultaneously. De Leon and her postdoc Jared Rovny first demonstrated this technique with a resolution of 500 nanometers, and Rlkes senior thesis has focused on improving this resolution down to 10 nm or maybe even a single nanometer.
Photo by
Denise Applewhite, Office of Communications
2
Rlke gives her parents a tour of Cottage Club in Fall 2022.
Courtesy of Elisabeth Rlke
Outside of her coursework, Rlke is a member of Mathey College and she serves as the diversity, equity and inclusion chair of University Cottage Club. She got involved in entrepreneurship through the Keller Center and the Entrepreneurship Club, and she traveled to California with the Silicon Valley Tiger Track to meet with entrepreneurs, venture capital firms and space related companies.
She received the Manfred Pyka Memorial Prize in Physics, given to outstanding physics undergraduates who have shown excellence in course work and promise in independent research; the Jocelyn Bell Burnell fellowship, aimed at encouraging women to pursue physics; and the Schwarzman Scholarship, which covers the cost of one-year masters program at Tsinghua University in Beijing.
Rlke says she feels a pull towards being a global citizen, having been born in the United Kingdom to a German dad and a Chinese mom.
My cultural identity is complicated, she said. I have family in different parts of the world, and sometimes being mixed race means you dont feel that you fully fit in anywhere. Visiting family in Germany or in China, I never looked like anybody else.
As a kid, that made me feel out of place sometimes, but as Ive grown up, Ive started to enjoy it, Rlke said. I think standing out is much better than disappearing into a crowd.
This elaborate array of mirrors, lenses, and scanning galvonometers route and collect light in this home-built microscope for quantum sensing.
Photo by
Denise Applewhite, Office of Communications
Rlke dons safety safety goggles before firing lasers into single-atom sized defects that are closer together than the wavelength of light.
Photo by
Denise Applewhite, Office of Communications
Rlke (left) visits Cairo with her family in 2009.
Photo by
Courtesy of Elisabeth Rlke
Elisabeth Rlke is a Class of 2023 physics major with a minor inappliedand computational mathematics.
Photo by
Denise Applewhite, Office of Communications
Continue reading here:
That flawed diamond could be a quantum physicist's best friend - Princeton University
- D-Wave enters agreement to sell up to $400M shares from time to time - Yahoo Finance - June 14th, 2025 [June 14th, 2025]
- IBM is building a large-scale quantum computer that 'would require the memory of more than a quindecillion of the world's most powerful... - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - The Globe and Mail - June 14th, 2025 [June 14th, 2025]
- IBMs Fault-Tolerant Quantum Computer Breakthrough: Exec More Comfortable Than Ever About 2029 Delivery - TechRepublic - June 14th, 2025 [June 14th, 2025]
- Protection against quantum computing threats now within grasp for companies and institutions - Orange - June 14th, 2025 [June 14th, 2025]
- Planckian Partners With University of Naples to Accelerate Next-Gen Quantum Processor - The Quantum Insider - June 14th, 2025 [June 14th, 2025]
- Bitcoin devs scramble to protect $2.2tn blockchain from looming quantum computer threat - dlnews.com - June 14th, 2025 [June 14th, 2025]
- Quantum Art to Advance Scalable Quantum Computing Through Logical Qubit Compiler and NVIDIA CUDA-Q Integration - The Quantum Insider - June 14th, 2025 [June 14th, 2025]
- Why Shares of D-Wave Quantum Are Sinking This Week - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- Mind-Blowing Quantum Leap: IBMs Groundbreaking Fault-Tolerant PC Set to Revolutionize Tech by 2029Prepare for Unprecedented Computational Power -... - June 14th, 2025 [June 14th, 2025]
- Why it's time to move beyond qubits for assessing quantum progress - Diginomica - June 14th, 2025 [June 14th, 2025]
- Quantum Computers Pose a Grave Risk to The Future. Here's Why. - ScienceAlert - June 10th, 2025 [June 10th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- At 40 ISC 2025 Continues to Connect the Dots - HPCwire - June 10th, 2025 [June 10th, 2025]
- Vodafone teams up with Orca for quantum-powered network optimisation - Capacity Media - June 10th, 2025 [June 10th, 2025]
- IonQ goes quantum shopping: Buys Oxford Ionics for $1.075B - Silicon Canals - June 10th, 2025 [June 10th, 2025]
- Infleqtion Selected to Power the UKs Largest Quantum Computing Breakthrough - Business Wire - June 10th, 2025 [June 10th, 2025]
- BTQ Technologies Announces Strategic Partnership with QPerfect to Achieve Quantum Advantage Using Neutral Atom Quantum Processors - WV News - June 10th, 2025 [June 10th, 2025]
- Quantum computers are on the edge of revealing new particle physics - New Scientist - June 10th, 2025 [June 10th, 2025]
- Where Will IonQ Be in 5 Years? - The Motley Fool - June 10th, 2025 [June 10th, 2025]
- IonQ buys Oxford Ionics for $1.075B: 6 things to know about it - Tech Funding News - June 10th, 2025 [June 10th, 2025]
- IBM plans to build first-of-its-kind quantum computer by 2029 after 'solving key bottleneck' - Live Science - June 10th, 2025 [June 10th, 2025]
- IBM aims to build the worlds first large-scale, error-corrected quantum computer by 2028 - MIT Technology Review - June 10th, 2025 [June 10th, 2025]
- IBM announced that it will release a quantum computer that has solved the error problem by 2029. Qua.. - - June 10th, 2025 [June 10th, 2025]
- Vodafone aims to leverage quantum computer to streamline broadband installation routes - Telecompaper - June 10th, 2025 [June 10th, 2025]
- This tiny quantum computer could blow massive data centers out of the water with speed, power, and pure physics - TechRadar - June 1st, 2025 [June 1st, 2025]
- Where Will Rigetti Computing Be in 5 Years? - Yahoo Finance - June 1st, 2025 [June 1st, 2025]
- IonQ vs. Microsoft: Which Quantum Cloud Stock Is the Better Buy Today? - Zacks Investment Research - June 1st, 2025 [June 1st, 2025]
- Q1 2025 Quantum Technology Investment: Whats Driving the Surge in Quantum Investment? - The Quantum Insider - June 1st, 2025 [June 1st, 2025]
- Where Will Rigetti Computing Be in 5 Years? - The Motley Fool - June 1st, 2025 [June 1st, 2025]
- Our Online World Relies on Encryption. What Happens If It Fails? - Boston University - June 1st, 2025 [June 1st, 2025]
- Jim Cramer on D-Wave Quantum (QBTS): Of the Ones That Are Out There, This is the Best - Insider Monkey - June 1st, 2025 [June 1st, 2025]
- It Might Actually Be 20 Times Easier for Quantum Computers to Break Bitcoin, Google Says - Decrypt - June 1st, 2025 [June 1st, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - The Motley Fool - June 1st, 2025 [June 1st, 2025]
- IonQ vs. Microsoft: Which Quantum Cloud Stock Is the Better Buy Today? - Yahoo Finance - June 1st, 2025 [June 1st, 2025]
- CEOs who aren't yet preparing for the quantum revolution are 'already too late,' IBM exec says - Business Insider - June 1st, 2025 [June 1st, 2025]
- New quantum visualisation techniques could accelerate the arrival of fault-tolerant quantum computers - University of Oxford - June 1st, 2025 [June 1st, 2025]
- Marylands Quantum Capital Ambitions Rely on UMD Physicist Ronald Walsworth - Source of the Spring - June 1st, 2025 [June 1st, 2025]
- We asked an expert about quantum computer threat as Google and BlackRock ring the alarm - Crypto News - June 1st, 2025 [June 1st, 2025]
- Whats Happening With IONQ Stock? - Trefis - June 1st, 2025 [June 1st, 2025]
- New Startup Sygaldry Aims to Rethink AI Infrastructure With Quantum Hardware - The Quantum Insider - June 1st, 2025 [June 1st, 2025]
- Breaking encryption with a quantum computer just got 20 times easier - New Scientist - May 26th, 2025 [May 26th, 2025]
- D-Wave launches the Advantage2 quantum computer with more than 4,400 qubits - SiliconANGLE - May 26th, 2025 [May 26th, 2025]
- Nvidia in Talks to Invest in Quantum Startup PsiQuantum - The Information - May 19th, 2025 [May 19th, 2025]
- Quantum Computers Just Outsmarted Supercomputers Heres What They Solved - SciTechDaily - May 19th, 2025 [May 19th, 2025]
- Should You Buy IonQ Stock to Ride the Quantum Computing Revolution? The Answer May Surprise You - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- D-Wave Quantum Stock Soaring On 509% Revenue Pop And Growth Prospects - Forbes - May 19th, 2025 [May 19th, 2025]
- Quantum Machines Launches Open-Source Framework that Cuts Quantum Computer Calibration From Hours to Minutes - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Silicon qubits bring scalable quantum computing closer to reality - The Brighter Side of News - May 19th, 2025 [May 19th, 2025]
- Quantum Computers Are Here, but Are Cybersecurity Professionals Ready? - IoT World Today - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Stock Tumbles After Last Week's 50% SurgeWatch These Key Levels - Investopedia - May 19th, 2025 [May 19th, 2025]
- Nvidia in talks to invest in PsiQuantum - Tom's Hardware - May 19th, 2025 [May 19th, 2025]
- Quantum computing: What is quantum error correction (QEC) and why is it so important? - Live Science - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Roadmaps: A Look at The Maps And Predictions of Major Quantum Players - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Stock Surges as Firm Swings to Profit - Investopedia - May 19th, 2025 [May 19th, 2025]
- $850bn by 2040! Should I buy quantum computing stocks for my Stocks and Shares ISA? - Yahoo - May 19th, 2025 [May 19th, 2025]
- France, Germany, and the Netherlands Launch $33M Trilateral Quantum Initiative - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Oxford Quantum Circuits Appoints Former GCHQ Director Sir Jeremy Fleming to Board - HPCwire - May 19th, 2025 [May 19th, 2025]
- Outside the Box: Socratic Machines and Quantum Ghosts - Fair Observer - May 19th, 2025 [May 19th, 2025]
- Preparing for the post-quantum era: a CIOs guide to securing the future of encryption - CyberScoop - May 19th, 2025 [May 19th, 2025]
- Quantum Computing First Quarter 2025 Earnings: EPS Beats Expectations, Revenues Lag - Yahoo Finance - May 19th, 2025 [May 19th, 2025]
- Nvidia in Talks to Invest in Quantum Computing Startup - The Information - May 19th, 2025 [May 19th, 2025]
- IonQ Stock Is Up 294% in the Past Year. Here's My Prediction For What Comes Next - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- Does Billionaire Israel Englander Know Something Wall Street Doesn't? He Sold a Quantum Computing Stock Analysts Say to Buy. - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- From R&D to ROI: The quantum computing revolution starts here - Techcircle - May 19th, 2025 [May 19th, 2025]
- How quantum computers could break RSA encryption and cure Alzheimer's - Interesting Engineering - May 19th, 2025 [May 19th, 2025]
- The race to perfect the quantum computer is on, and UC is helping America hold its lead - University of California - May 15th, 2025 [May 15th, 2025]
- Keysight Quantum Control System Embedded within Fujitsu and RIKENs World-Leading 256-Qubit Quantum Computer - Morningstar - May 15th, 2025 [May 15th, 2025]
- Keysight Technologies, Inc. Quantum Control System Embedded Within Fujitsu and Riken's 256-Qubit Quantum Computer - marketscreener.com - May 15th, 2025 [May 15th, 2025]
- The Worlds First Song Created by Artificial Intelligence Using a Quantum Computer Is HereIt Sounds Nothing Like What You Expect - The Daily Galaxy - May 11th, 2025 [May 11th, 2025]
- Regulation watch: how governments are dealing with the risks of quantum computing - Strategic Risk Global - May 11th, 2025 [May 11th, 2025]
- The age of the hype cycle: why science needs room to breathe - varsity.co.uk - May 11th, 2025 [May 11th, 2025]
- Quantums Double-Edged Sword: Balancing Risk and Readiness - InformationWeek - May 11th, 2025 [May 11th, 2025]
- The Computational Limit of Life May Be Much Higher Than We Thought - Yahoo - May 11th, 2025 [May 11th, 2025]
- BlackRock beefs up quantum compute threat warnings to Bitcoin investors - dlnews.com - May 11th, 2025 [May 11th, 2025]
- From false alarms to real threats: Protecting cryptography against quantum - cio.com - May 11th, 2025 [May 11th, 2025]
- Boosting quantum error correction using AI - Phys.org - May 11th, 2025 [May 11th, 2025]
- Laws governing finance and investment can help to protect society from dangers of quantum computing, study shows - Phys.org - May 11th, 2025 [May 11th, 2025]
- Quantum computing stocks jump after strong results from D-Wave Quantum (QBTS:NYSE) - Seeking Alpha - May 11th, 2025 [May 11th, 2025]
- Listen to the worlds first song made by a quantum computer and AI - The Next Web - May 10th, 2025 [May 10th, 2025]