That flawed diamond could be a quantum physicist’s best friend – Princeton University
Shoppers like flawless diamonds, but for quantum physicists, the flaws are the best part.
Senior Elisabeth Rlke has spent the past year using lasers and flawed diamonds tiny wafers of diamond with flaws the size of a single atom to develop a quantum sensor.
The clear wafer at the center of the equipment is a diamond plate, precisely manufactured to be 2 mm on a side and .3 mm thick, with atomic-sized flaws at which Rlke and her adviser Nathalie de Leon shine green and orange lasers.
Photo by
David Kelly Crow for the Office of Engineering Communications
Unlike quantum computers, which are still more theoretical than practical, quantum sensors are already in use. Rlke and her adviser, quantum physicist Nathalie de Leon, are working on a new approach to quantum sensing that depends on using two of these single-atom defects simultaneously.
Because they are so, so small, you could begin to map and sense things on a scale that has never been feasible before, said Rlke, a physics concentrator pursuing a certificate in applied and computational mathematics. It would be revolutionary to chemistry, biology and especially medical devices.
Working with very bright students like Elisabeth is always just a privilege, said de Leon, an associate professor of electrical and computer engineering who is associated faculty in the physics department. She brings a fresh perspective and a different take on things, and that brought a little more creativity on the project than I think would have happened otherwise. Im lucky to be at Princeton and get these really great students knocking on my door.
Rlke knew before she came to Princeton that she wanted to study physics and astronomy, but she also knew that she wanted to take full advantage of the liberal arts. I have taken courses in history, philosophy, religion, entrepreneurship, film, art and others, and I believe it has been a cornerstone of my Princeton experience. The wonderful part about Princetons liberal arts education is that it allows you to take classes in a range of subjects, meaning that what you choose to major in isnt the only focus of your education, as is the case with most British universities and a strong reason why I wanted to study in the U.S., said Rlke, who was born and raised in London.
I do think that there is overlap in the critical and creative thinking used in both higher-level physics and mathematics courses and the humanities subjects, she added.
When Princeton closed its campus to in-person instruction in March of Rlkes first year, she went home to London for Zoom classes. That summer, when travel restrictions eased, she and a Princeton classmate moved into an apartment in Rome. I took an art history class that fall, and it was amazing, Rlke said. I remember one assignment asked us to go find art wherever you are. Most of my classmates looked at, like, a teapot from their house, and I chose a Bernini sculpture.
After she returned to campus, she decided to focus her first junior paper on a truly enormous question: the nature of dark energy in the universe.
She hadnt had a course in general relativity, she hadnt had a course in cosmology, and she wasnt daunted at all, said Paul Steinhardt, Princetons Albert Einstein Professor in Science and a professor of physics who was her adviser on that paper. It was clearly a stretch for her, but she was just full of energy and enthusiasm. I really enjoy seeing a student stretching and learning, and that certainly characterized Elisabeth. She broke her leg that semester, but she still always came to our weekly meetings with enthusiasm and cheer and lots of great research questions.
After they worked together on that paper, Steinhardt served as the second reader on Rlkes second junior paper, then reprised that role for her senior thesis. Ill have read all her theses by the time were through, he said.
Rlke came to Princeton knowing she wanted to immerse herself in STEM science, technology, engineering and mathematics and specifically in physics and astronomy.
The Princeton astrophysics and physics departments are absolutely amazing, she said. I feel so lucky. When I visited Princeton after I got in, I went to go see Einsteins old classroom and walked to his house, which is near campus.
In the lab, Rlkeperforms a confocal scan to locate NV centers in a diamond lattice.
Photo by
Denise Applewhite, Office of Communications
After tackling theoretical cosmology for her first independent research project, she wanted to try something more hands-on, so she did her second junior paper on plasma propulsion. Both were very, very interesting. The first one was very theoretical, and the second was almost too experimental, she said. I was actually climbing into a thrust tank with tools and tinkering with stuff in there. So for my thesis, I wanted something in the middle.
Her broad perspective has served Rlke well as she tackles quantum sensing, a problem that has brought together professors from physics, chemistry and engineering with the goal of tackling a large range of problems, from biophysics and biomedical applications to condensed matter physics and designing new navigational sensors.
The general ethos of my research group is to try to see problems without any borders as much as possible, said de Leon. Our approach to problems tends to start with, What does it take to solve this? We have all of physics and all of chemistry and all of materials engineering all the tools of humanity so lets see if we can MacGyver our way to a solution. Elisabeth definitely fit in like a fish in water.
Diamonds are made of pure carbon, as are charcoal and the graphite in pencils. But you can write with pencils (and charcoal) because those carbon atoms are organized in sheets that slide apart with the barest pressure, leaving marks behind.
The carbon atoms in a diamond, by contrast, have been forced together with tremendous pressure, crowding the atoms together in a perfect and complex web. This allows for another unique property: when a nitrogen atom pushes in and displaces two carbon atoms, it creates a tiny defect called a nitrogen vacancy center or NV center.
NV centers behave like tiny compass needles and have been used in quantum sensors that can measure magnetic fields. While quarantining at home during the COVID pandemic, de Leon began wondering what would happen if there were two NV centers, precisely separated within a diamond chip.
It turns out that while its much, much harder to measure two nitrogen vacancies simultaneously, once you do, you can measure new physical quantities, namely correlations in the magnetic field in space and time. With simultaneous measurements of two NV centers, a whole new world of nanoscale measurements is possible, de Leon said.
This is a fundamentally new thing, she said. The world is our oyster. We can use this new technique that measures a completely new physical quantity. So lets clean up! Lets go look at everything that people were trying to do in the 80s and then just got stuck because they didnt have the right tool. Maybe theres some really cool physics that we can learn. That's where Elisabeth comes in.
The voyage from pandemic inspiration to simultaneously measuring two NV centers took years. De Leon and a postdoc in her lab, Jared Rovny, spent 18 months working out the math and longer than that to figure out how to build a tool that lets you shine lasers at two atomic-sized objects and then count the photons flying out. They first demonstrated this technique with a resolution of 500 nanometers. (For comparisons sake, the period at the end of this sentence is about a million nanometers across.) Rlkes senior thesis has focused on improving this resolution from 500 nanometers down to 10 nm or maybe even a single nanometer.
Rlke credits her coursework and her independent research projects at the University with developing her ability to navigate uncertainty and face challenges head-on.
I remember a three-hour physics exam that only had two questions. You have to spend so much time grasping around in the darkness, trying to think of how to do this, which method to start with and building the skills to do that makes you a person with the ability to think really critically and not be afraid if youre going head-on to a problem where you cant really see the end or you dont really know how to solve it.
In high school, I hated those sorts of problems, she said. I liked getting to the answer and getting it right. That growth happened at Princeton.
She and de Leon both enjoyed their weekly thesis advising sessions.
I have enough autonomy to decide what exactly I want to do, Rlke said. But de Leon also provides enough help to make sure that I have the right background knowledge.
She always shows up at my office extremely sunny and very enthusiastic, de Leon said of Rlke. I dont know where she gets all that energy. Even if its the middle of midterm season or application season, she still just shows up and is like, Okay, heres what Ive done. Look at all my data. Lets discuss it. Heres my plan. I think this thing is really interesting.
1
Rlke and her thesis adviser, quantum physicist Nathalie de Leon (right), are measuring two nitrogen vacancy centers simultaneously. De Leon and her postdoc Jared Rovny first demonstrated this technique with a resolution of 500 nanometers, and Rlkes senior thesis has focused on improving this resolution down to 10 nm or maybe even a single nanometer.
Photo by
Denise Applewhite, Office of Communications
2
Rlke gives her parents a tour of Cottage Club in Fall 2022.
Courtesy of Elisabeth Rlke
Outside of her coursework, Rlke is a member of Mathey College and she serves as the diversity, equity and inclusion chair of University Cottage Club. She got involved in entrepreneurship through the Keller Center and the Entrepreneurship Club, and she traveled to California with the Silicon Valley Tiger Track to meet with entrepreneurs, venture capital firms and space related companies.
She received the Manfred Pyka Memorial Prize in Physics, given to outstanding physics undergraduates who have shown excellence in course work and promise in independent research; the Jocelyn Bell Burnell fellowship, aimed at encouraging women to pursue physics; and the Schwarzman Scholarship, which covers the cost of one-year masters program at Tsinghua University in Beijing.
Rlke says she feels a pull towards being a global citizen, having been born in the United Kingdom to a German dad and a Chinese mom.
My cultural identity is complicated, she said. I have family in different parts of the world, and sometimes being mixed race means you dont feel that you fully fit in anywhere. Visiting family in Germany or in China, I never looked like anybody else.
As a kid, that made me feel out of place sometimes, but as Ive grown up, Ive started to enjoy it, Rlke said. I think standing out is much better than disappearing into a crowd.
This elaborate array of mirrors, lenses, and scanning galvonometers route and collect light in this home-built microscope for quantum sensing.
Photo by
Denise Applewhite, Office of Communications
Rlke dons safety safety goggles before firing lasers into single-atom sized defects that are closer together than the wavelength of light.
Photo by
Denise Applewhite, Office of Communications
Rlke (left) visits Cairo with her family in 2009.
Photo by
Courtesy of Elisabeth Rlke
Elisabeth Rlke is a Class of 2023 physics major with a minor inappliedand computational mathematics.
Photo by
Denise Applewhite, Office of Communications
Continue reading here:
That flawed diamond could be a quantum physicist's best friend - Princeton University
- Building the world's first open-source quantum computer - Phys.org - January 22nd, 2026 [January 22nd, 2026]
- Rigetti: Not The Quantum Computing Stock To Own - There Are Better Alternatives - Seeking Alpha - January 22nd, 2026 [January 22nd, 2026]
- IQM and Bechtle to install five-qubit quantum computer at Heilbronn University, Germany - BeBeez International - January 22nd, 2026 [January 22nd, 2026]
- Exclusive from 36Kr: Team with Tsinghua and Harvard Backgrounds Developing Quantum Computers, Revenues Double, Secures Hundreds of Millions in... - January 22nd, 2026 [January 22nd, 2026]
- Quantum error correction with logical qubits - EurekAlert! - January 22nd, 2026 [January 22nd, 2026]
- These 3 Giant Tech Stocks Are Poised for Explosive Quantum Growth - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- The quantum-cryptography cliff: From roadmaps to reality - SC Media - January 22nd, 2026 [January 22nd, 2026]
- MIT Researchers Demonstrate Faster Cooling Method for Chip-Based Trapped-Ion Quantum Systems - The Quantum Insider - January 22nd, 2026 [January 22nd, 2026]
- It started with a cat: How 100 years of quantum weirdness powers todays tech - Texas A&M Stories - January 22nd, 2026 [January 22nd, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Network-based Quantum Computing Achieves Distributed Fault-Tolerance with Many Small Nodes - Quantum Zeitgeist - January 22nd, 2026 [January 22nd, 2026]
- RGTI and QUBT: This Analyst Sees the Next Jump in Quantum Stocks - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Building the worlds first open-source quantum computer - University of Waterloo - January 20th, 2026 [January 20th, 2026]
- The 3 Best Quantum Computing Stocks to Buy for 2026 - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- Safeguard Your WAN from Quantum Computing Threats - Cisco Blogs - January 14th, 2026 [January 14th, 2026]
- PsiQuantum Collaborating with Airbus to Advance Quantum Computing for Aerospace - HPCwire - January 14th, 2026 [January 14th, 2026]
- Putting Quantum Computing to the Test - University of Pittsburgh - January 14th, 2026 [January 14th, 2026]
- Xanadu and Thorlabs Partner to Advance Optical Controls for Photonic Quantum Computing - HPCwire - January 14th, 2026 [January 14th, 2026]
- Why Quantum Computers Are Inherently Reversible (And Why That Matters) - Quantum Zeitgeist - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- BTQ Technologies Added to VanEck Quantum Computing UCITS ETF, Expanding European Access to BTQ Through a Regulated UCITS Wrapper - PR Newswire - January 14th, 2026 [January 14th, 2026]
- Singapore and Japan team up on quantum computing - Computer Weekly - January 14th, 2026 [January 14th, 2026]
- Will Quantum Computing Stocks Become the AI Stocks of 2026? - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- Silicon vibrations add a new twist to dark matter research and quantum computing - The Brighter Side of News - January 14th, 2026 [January 14th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - AOL.com - January 14th, 2026 [January 14th, 2026]
- Yaqumo Inc. and Entropica Labs Sign MOU, Witnessed by Singapore and Japan Governments, to Accelerate Fault-Tolerant Quantum Computing - The Quantum... - January 14th, 2026 [January 14th, 2026]
- Quantum Advantage Has Likely Been Achieved The Debate Is Over What Counts - The Quantum Insider - January 14th, 2026 [January 14th, 2026]
- Will quantum computing stocks become the AI stocks of 2026? - MSN - January 14th, 2026 [January 14th, 2026]
- Quantum Computing Stocks To Add to Your Watchlist - January 12th - MarketBeat - January 14th, 2026 [January 14th, 2026]
- Quantum computing revives debate over Bitcoins long-term security - Mugglehead Magazine - January 14th, 2026 [January 14th, 2026]
- Quantum AI: Telco's Next Big Thing or Expensive Distraction? - Telecoms - January 14th, 2026 [January 14th, 2026]
- What does a quantum computer sound like? This artist and scientist are about to find out - Financial Times - January 11th, 2026 [January 11th, 2026]
- Bipartisan Sens. Give Quantum Reauthorization Act Another Chance - MeriTalk - January 11th, 2026 [January 11th, 2026]
- 3 Quantum Computing Stocks That Could Make a Millionaire - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Infleqtion and Churchill X Move Forward on SPAC Combination - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- Quantum computing has advantages over traditional, but still in early innings: BMO (IONQ:NYSE) - Seeking Alpha - January 9th, 2026 [January 9th, 2026]
- D-Wave Buys Quantum Circuits in Shift to Higher Gear - EE Times - January 9th, 2026 [January 9th, 2026]
- Beyond the Hype: 5 Reasons Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Can Crash in 2026 - Nasdaq - January 9th, 2026 [January 9th, 2026]
- Quantum neural network may be able to cheat the uncertainty principle - New Scientist - January 9th, 2026 [January 9th, 2026]
- Q&A: What does cybersecurity look like in the quantum age? - Penn State University - January 9th, 2026 [January 9th, 2026]
- D-Wave Demo At CES 2026 And The Energy Efficiency Of Quantum Computing - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Quantum Computers Extract Scattering Phase Shift In One-Dimensional Systems Using Integrated Correlation Functions - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- How John Clarke's Nobel Prize-Winning Research Paved the Way for Quantum Computing - Berkeley Lab News Center (.gov) - January 9th, 2026 [January 9th, 2026]
- Circle Examines How Crypto and Web3 Ecosystems are Preparing Blockchains for the Quantum Era - Crowdfund Insider - January 9th, 2026 [January 9th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Quantum computing is closer than you think - Federal News Network - January 9th, 2026 [January 9th, 2026]
- Quantum computing company D-Wave acquires new tech in major merger - Washington Times - January 9th, 2026 [January 9th, 2026]
- Josephson junctions quantum computing building blocks are possible with only one superconductor, experiment confirms - Technology Org - January 9th, 2026 [January 9th, 2026]
- After a Year of Quantum Awareness, 2026 Becomes the Year of Quantum Security - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- The best quantum computing stock to buy hand over fist in 2026 - MSN - January 9th, 2026 [January 9th, 2026]
- Google Willow: The secrets of the world's most powerful quantum computer - BBC - January 8th, 2026 [January 8th, 2026]
- D-Wave: Quantums First Real Revenue Winner (NYSE:QBTS) - Seeking Alpha - January 8th, 2026 [January 8th, 2026]
- D-Wave to Buy Quantum Circuits for $550 Million. Useful Computers Are Coming to Market. - Barron's - January 8th, 2026 [January 8th, 2026]
- DARPA seeks universal translator between different kinds of quantum computer - Breaking Defense - January 8th, 2026 [January 8th, 2026]
- Royal Bank, Telus back $130-million financing by quantum developer Photonic - The Globe and Mail - January 8th, 2026 [January 8th, 2026]
- Qubits Can be Cloned: Scientists Discover First Method to Safely Back up Quantum Information - The Quantum Insider - January 8th, 2026 [January 8th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- Fredkin And Toffoli: The Architects Of Reversible Computation - Quantum Zeitgeist - January 8th, 2026 [January 8th, 2026]
- Quantum Resistance LLC on the Future of Digital Security in a World of Emerging Quantum Computing - International Business Times - January 8th, 2026 [January 8th, 2026]
- Moscow State University and Rosatom Test 72-Qubit Neutral-Atom Quantum Prototype - Quantum Computing Report - January 8th, 2026 [January 8th, 2026]
- Prediction: These 4 quantum computing stocks will skyrocket in 2026 - MSN - January 8th, 2026 [January 8th, 2026]
- D-Wave Rises On Quantum First - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- Are Quantum Computing ETFs the Safest Bet for 10-Year Growth? - Nasdaq - January 8th, 2026 [January 8th, 2026]
- Tech and compliance 2026: What to watch for in AI, cybersecurity and quantum computing - Compliance Week - January 8th, 2026 [January 8th, 2026]
- Using microwave pulses to plug leaks in quantum computers makes them more reliable - Phys.org - December 29th, 2025 [December 29th, 2025]
- 5 Major Quantum Computing Breakthroughs that Shaped 2025 - TipRanks - December 29th, 2025 [December 29th, 2025]
- D-Wave stock slides into year-end as quantum peers retreat in thin trade - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Trends in 2025: Data Reveals Hardware Bets, Cloud Growth And Security Focus - The Quantum Insider - December 29th, 2025 [December 29th, 2025]
- The Neglecton: How Mathematical 'Garbage' Saved The Quantum Computer - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Quantum science and technology: highlights of 2025 - Physics World - December 29th, 2025 [December 29th, 2025]
- Are These 2 Quantum Computing Stocks the Key to Decades of Wealth? - The Motley Fool - December 29th, 2025 [December 29th, 2025]
- The Man Who Knew Too Much: Why Ettore Majoranas 1938 disappearance still haunts quantum computing. - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Breaking The Code: How Peter Shor Proved Quantum Power Was Real - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Opinion: Quantum computing is the stock markets next big tech play and these stocks are still cheap - MarketWatch - December 29th, 2025 [December 29th, 2025]
- Quantum computing made measurable progress toward real-world use in 2025 - TechSpot - December 29th, 2025 [December 29th, 2025]
- IonQ drops with quantum peers into year-end, as investors weigh next catalysts - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Forget Rigetti Computing: This Quantum Stock Offers a Far Better Risk-Reward Right Now - Finviz - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Stocks: IonQ, Rigetti, D-Wave and QUBT Slide Into Year-EndWhat to Watch Before Mondays Open - ts2.tech - December 29th, 2025 [December 29th, 2025]