Scientists blast atoms with Fibonacci laser to make an "extra" dimension of time – Livescience.com
By firing a Fibonacci laser pulse at atoms inside a quantum computer, physicists have created a completely new, strange phase of matter that behaves as if it has two dimensions of time.
The new phase of matter, created by using lasers to rhythmically jiggle a strand of 10 ytterbium ions, enables scientists to store information in a far more error-protected way, thereby opening the path to quantum computers that can hold on to data for a long time without becoming garbled. The researchers outlined their findings in a paper published July 20 in the journal Nature (opens in new tab).
The inclusion of a theoretical "extra" time dimension "is a completely different way of thinking about phases of matter," lead author Philipp Dumitrescu, a researcher at the Flatiron Institute's Center for Computational Quantum Physics in New York City, said in a statement. "I've been working on these theory ideas for over five years, and seeing them come actually to be realized in experiments is exciting."
Related: Otherworldly 'time crystal' made inside Google quantum computer could change physics forever
The physicists didn't set out to create a phase with a theoretical extra time dimension, nor were they looking for a method to enable better quantum data storage. Instead, they were interested in creating a new phase of matter a new form in which matter can exist, beyond the standard solid, liquid, gas, plasma.
They set about building the new phase in the quantum computer company Quantinuum's H1 quantum processor, which consists of 10 ytterbium ions in a vacuum chamber that are precisely controlled by lasers in a device known as an ion trap.
Ordinary computers use bits, or 0s and 1s, to form the basis of all calculations. Quantum computers are designed to use qubits, which can also exist in a state of 0 or 1. But that's just about where the similarities end. Thanks to the bizarre laws of the quantum world, qubits can exist in a combination, or superposition, of both the 0 and 1 states until the moment they are measured, upon which they randomly collapse into either a 0 or a 1.
This strange behavior is the key to the power of quantum computing, as it allows qubits to link together through quantum entanglement, a process that Albert Einstein dubbed "spooky action at a distance." Entanglement couples two or more qubits to each other, connecting their properties so that any change in one particle will cause a change in the other, even if they are separated by vast distances. This gives quantum computers the ability to perform multiple calculations simultaneously, exponentially boosting their processing power over that of classical devices.
But the development of quantum computers is held back by a big flaw: Qubits don't just interact and get entangled with each other; because they cannot be perfectly isolated from the environment outside the quantum computer, they also interact with the outside environment, thus causing them to lose their quantum properties, and the information they carry, in a process called decoherence.
"Even if you keep all the atoms under tight control, they can lose their 'quantumness' by talking to their environment, heating up or interacting with things in ways you didn't plan," Dumitrescu said.
To get around these pesky decoherence effects and create a new, stable phase, the physicists looked to a special set of phases called topological phases. Quantum entanglement doesn't just enable quantum devices to encode information across the singular, static positions of qubits, but also to weave them into the dynamic motions and interactions of the entire material in the very shape, or topology, of the material's entangled states. This creates a "topological" qubit that encodes information in the shape formed by multiple parts rather than one part alone, making the phase much less likely to lose its information.
A key hallmark of moving from one phase to another is the breaking of physical symmetries the idea that the laws of physics are the same for an object at any point in time or space. As a liquid, the molecules in water follow the same physical laws at every point in space and in every direction. But if you cool water enough so that it transforms into ice, its molecules will pick regular points along a crystal structure, or lattice, to arrange themselves across. Suddenly, the water molecules have preferred points in space to occupy, and they leave the other points empty; the spatial symmetry of the water has been spontaneously broken.
Creating a new topological phase inside a quantum computer also relies on symmetry breaking, but with this new phase, the symmetry is not being broken across space, but time.
Related: World's 1st multinode quantum network is a breakthrough for the quantum internet
By giving each ion in the chain a periodic jolt with the lasers, the physicists wanted to break the continuous time symmetry of the ions at rest and impose their own time symmetry where the qubits remain the same across certain intervals in time that would create a rhythmic topological phase across the material.
But the experiment failed. Instead of inducing a topological phase that was immune to decoherence effects, the regular laser pulses amplified the noise from outside the system, destroying it less than 1.5 seconds after it was switched on.
After reconsidering the experiment, the researchers realized that to create a more robust topological phase, they would need to knot more than one time symmetry into the ion strand to decrease the odds of the system getting scrambled. To do this, they settled on finding a pulse pattern that did not repeat simply and regularly but nonetheless showed some kind of higher symmetry across time.
This led them to the Fibonacci sequence, in which the next number of the sequence is created by adding the previous two. Whereas a simple periodic laser pulse might just alternate between two laser sources (A, B, A, B, A, B, and so on), their new pulse train instead ran by combining the two pulses that came before (A, AB, ABA, ABAAB, ABAABABA, etc.).
This Fibonacci pulsing created a time symmetry that, just like a quasicrystal in space, was ordered without ever repeating. And just like a quasicrystal, the Fibonacci pulses also squish a higher dimensional pattern onto a lower dimensional surface. In the case of a spatial quasicrystal such as Penrose tiling, a slice of a five-dimensional lattice is projected onto a two-dimensional surface. When looking at the Fibonacci pulse pattern, we see two theoretical time symmetries get flattened into a single physical one.
"The system essentially gets a bonus symmetry from a nonexistent extra time dimension," the researchers wrote in the statement. The system appears as a material that exists in some higher dimension with two dimensions of time even if this may be physically impossible in reality.
When the team tested it, the new quasiperiodic Fibonacci pulse created a topographic phase that protected the system from data loss across the entire 5.5 seconds of the test. Indeed, they had created a phase that was immune to decoherence for much longer than others.
"With this quasi-periodic sequence, there's a complicated evolution that cancels out all the errors that live on the edge," Dumitrescu said. "Because of that, the edge stays quantum-mechanically coherent much, much longer than you'd expect."
Although the physicists achieved their aim, one hurdle remains to making their phase a useful tool for quantum programmers: integrating it with the computational side of quantum computing so that it can be input with calculations.
"We have this direct, tantalizing application, but we need to find a way to hook it into the calculations," Dumitrescu said. "That's an open problem we're working on."
Originally published on Live Science.
Read more:
Scientists blast atoms with Fibonacci laser to make an "extra" dimension of time - Livescience.com
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 6th, 2025 [July 6th, 2025]
- Cracking the quantum code: light and glass are set to transform computing - ScienceBlog.com - July 6th, 2025 [July 6th, 2025]
- Helgoland 2025: the inside story of what happened on the quantum island - Physics World - July 6th, 2025 [July 6th, 2025]
- A shortcut to quantum randomness: Hacked qubit blocks achieve the unexpected - Interesting Engineering - July 6th, 2025 [July 6th, 2025]
- Physicists use 5,564-qubit quantum computer to model the death of our universe - The Brighter Side of News - July 6th, 2025 [July 6th, 2025]
- Small, room-temperature quantum computers that use light on the horizon after breakthrough, scientists say - Live Science - July 4th, 2025 [July 4th, 2025]
- Quantum computers are surprisingly random but that's a good thing - New Scientist - July 4th, 2025 [July 4th, 2025]
- Quantum computers could bring lost Bitcoin back to life: Heres how - Cointelegraph - July 4th, 2025 [July 4th, 2025]
- The Quantum Computing Industry Is Crowded. Why D-Wave, IonQ, and Rigetti Are a Buy. - Barron's - July 4th, 2025 [July 4th, 2025]
- Quantum tech is coming and with it a risk of cyber doomsday - politico.eu - July 4th, 2025 [July 4th, 2025]
- Quantum Annealers From D-Wave Optimise Robotic Inspection Of Industrial Components. - Quantum Zeitgeist - July 4th, 2025 [July 4th, 2025]
- The Best Quantum Computing Stocks to Buy Right Now - Yahoo Finance - July 4th, 2025 [July 4th, 2025]
- QBTS: With Its Quantum Leap Priced In, Jump In On A Dip (NYSE:QBTS) - Seeking Alpha - July 4th, 2025 [July 4th, 2025]
- Buy this quantum computing stock that can rally more than 30%, Cantor says - CNBC - July 4th, 2025 [July 4th, 2025]
- A new tech race is on. Can Europe learn from the ones it lost? - politico.eu - July 4th, 2025 [July 4th, 2025]
- Rigetti Computing: Cantor's Bullish Call May Be Just the Start - MarketBeat - July 4th, 2025 [July 4th, 2025]
- The Quantum Data Center of the Future: Q&A - IoT World Today - July 4th, 2025 [July 4th, 2025]
- Quantum Computing Investments: A Once-in-a-Lifetime Opportunity? - Yahoo Finance - July 2nd, 2025 [July 2nd, 2025]
- Q&A: Companies are racing to develop the first useful quantum computerultracold neutral atoms could be the key - Phys.org - July 2nd, 2025 [July 2nd, 2025]
- Quantum Computers Just Reached the Holy Grail No Assumptions, No Limits - SciTechDaily - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - MSN - July 2nd, 2025 [July 2nd, 2025]
- The IBM Comeback Story That's Making Wall Street Pay Attention - Investopedia - July 2nd, 2025 [July 2nd, 2025]
- Scientists Achieve Teleportation Between Quantum Computers for the First Time Ever - The Daily Galaxy - July 2nd, 2025 [July 2nd, 2025]
- Measuring error rates of mid-circuit measurements - Nature - July 2nd, 2025 [July 2nd, 2025]
- IonQ Backs Texas Quantum Initiative To Boost Innovation - Quantum Zeitgeist - July 2nd, 2025 [July 2nd, 2025]
- Inside the Quantum Economy: Insights from the 2025 QED-C Report - AZoQuantum - July 2nd, 2025 [July 2nd, 2025]
- Six Ways Argonne Is Advancing Quantum Information Research - HPCwire - July 2nd, 2025 [July 2nd, 2025]
- The Best Quantum Computing Stocks to Buy Right Now - MSN - July 2nd, 2025 [July 2nd, 2025]
- Researchers Target Quantum Advantage in Binding Energy Calculations - The Quantum Insider - July 2nd, 2025 [July 2nd, 2025]
- Pure Quantum: Rigetti's Journey From YC To NASDAQ And What Could Be Next - Quantum Zeitgeist - July 2nd, 2025 [July 2nd, 2025]
- Quantum machine learning (QML) is closer than you think: Why business leaders should start paying attention now - cio.com - July 2nd, 2025 [July 2nd, 2025]
- Quantum Threat: Bitcoins Fight To Secure Our Digital Future - Forbes - July 2nd, 2025 [July 2nd, 2025]
- The road to quantum datacentres goes beyond logical qubits - Computer Weekly - July 2nd, 2025 [July 2nd, 2025]
- Potential Solution Halves Testing Cost for Quantum Chips, Boosting Commercial Viability | Newswise - Newswise - June 29th, 2025 [June 29th, 2025]
- Scientists achieve teleportation between quantum computers for the first time ever - Earth.com - June 29th, 2025 [June 29th, 2025]
- Down 48%, Should You Buy the Dip on Rigetti Computing? - Yahoo Finance - June 29th, 2025 [June 29th, 2025]
- QuEra Computing, founded by researchers at Harvard University and the Massachusetts Institute of Te.. - - June 29th, 2025 [June 29th, 2025]
- Down 30%, Should You Buy the Dip on IonQ? - MSN - June 29th, 2025 [June 29th, 2025]
- New Hybrid QuantumClassical Computing Approach Used to Study Chemical Systems - Caltech - June 28th, 2025 [June 28th, 2025]
- Quantum, Moores Law, And AIs Future - Forbes - June 28th, 2025 [June 28th, 2025]
- Canada Sets Timeline to Shield Government Systems from Quantum Threat - The Quantum Insider - June 28th, 2025 [June 28th, 2025]
- Is the UK Set for an AI-Powered Future with Quantum Boost? - AI Magazine - June 28th, 2025 [June 28th, 2025]
- 'Quantum AI' algorithms already outpace the fastest supercomputers, study says - Live Science - June 28th, 2025 [June 28th, 2025]
- IonQ vs IBM: Which Quantum Computing Stock Is the Better Buy Today? - Zacks Investment Research - June 28th, 2025 [June 28th, 2025]
- Quantum Computers Stealing Bitcoin? Stealing Ideas Is A Bigger Threat - Forbes - June 28th, 2025 [June 28th, 2025]
- IonQ And The University of Washington Simulate Process Linked To The Universes Matter-Antimatter Imbalance - The Quantum Insider - June 28th, 2025 [June 28th, 2025]
- Where Will Rigetti Computing Stock Be in 5 Years? - The Motley Fool - June 28th, 2025 [June 28th, 2025]
- Hearing Wrap Up: U.S. Must Update Technology to Prepare for the Quantum Age - United States House Committee on Oversight and Accountability - (.gov) - June 26th, 2025 [June 26th, 2025]
- U.S. Lawmakers Urge Action on Cybersecurity in Face of Quantum Threat - The Quantum Insider - June 26th, 2025 [June 26th, 2025]
- New chip could be the breakthrough the quantum computing industry has been waiting for - Live Science - June 26th, 2025 [June 26th, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - MSN - June 26th, 2025 [June 26th, 2025]
- Quantum Computing Achieves Protein Folding Breakthrough - IoT World Today - June 26th, 2025 [June 26th, 2025]
- Mace Opens Hearing on Quantum Computing and Advancing U.S. Cybersecurity - United States House Committee on Oversight and Accountability - (.gov) - June 26th, 2025 [June 26th, 2025]
- Report to Congress on Cyber Threats from Quantum Computing - USNI News - June 26th, 2025 [June 26th, 2025]
- Bringing post-quantum cryptography to Windows - InfoWorld - June 26th, 2025 [June 26th, 2025]
- Modeling a nitrogen-vacancy center with NVIDIA CUDA-Q Dynamics: University of Washington Capstone Project - Amazon.com - June 26th, 2025 [June 26th, 2025]
- ISC2025 Panel: Quantum Software Needs to Move Beyond Duct Tape But How? - HPCwire - June 26th, 2025 [June 26th, 2025]
- Q-CTRLs Fire Opal Integrated with Rigettis Ankaa-3, Demonstrating Significant Performance Boosts - Quantum Computing Report - June 26th, 2025 [June 26th, 2025]
- IonQ and the University of Washington Simulate Process Linked To The Universes Matter-Antimatter Imbalance - Business Wire - June 26th, 2025 [June 26th, 2025]
- IonQ to Participate in Quantum Korea 2025 and Support Quantum Hackathon for Emerging Talent - Business Wire - June 26th, 2025 [June 26th, 2025]
- 'This result has been more than a decade in the making': Millions of qubits on a single quantum processor now possible after cryogenic breakthrough -... - June 26th, 2025 [June 26th, 2025]
- A quantum opportunity; Colorado is the future of quantum computing, and a local nonprofit is part of the team - Montrose Daily Press - June 26th, 2025 [June 26th, 2025]
- IonQ and University of Washington Simulate Neutrinoless Double-Beta Decay on Quantum Computer - Quantum Computing Report - June 26th, 2025 [June 26th, 2025]
- Government to Invest 645.4 Billion Won in Quantum Computer Development Over 8 Years - Businesskorea - June 26th, 2025 [June 26th, 2025]
- This Tech Giant Just Pulled the Curtain on a New Quantum Computer - 24/7 Wall St. - June 26th, 2025 [June 26th, 2025]
- IBM brings Fugaku supercomputer together with first quantum computer - SDxCentral - June 26th, 2025 [June 26th, 2025]
- At last, we are discovering what quantum computers will be useful for - New Scientist - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - IBM Newsroom - June 24th, 2025 [June 24th, 2025]
- The Year of Quantum: From concept to reality in 2025 - McKinsey & Company - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - PR Newswire - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Quantum breakthrough: Magic states now easier, faster, and way less noisy - ScienceDaily - June 24th, 2025 [June 24th, 2025]
- Unpacking quantum myths...and why they matter - Diginomica - June 24th, 2025 [June 24th, 2025]
- Bitcoins Countdown Has Begun: Experts Reveal When Quantum Computers Will Finally Shatter Its Legendary Encryption - Rude Baguette - June 24th, 2025 [June 24th, 2025]
- Six ways Argonne is advancing quantum information research - anl.gov - June 24th, 2025 [June 24th, 2025]
- IBM and RIKEN Unveil First IBM Quantum System Two Outside of the U.S. - MarketScreener - June 24th, 2025 [June 24th, 2025]
- eleQtron selected as Technology Pioneer 2025 by the World Economic Forum - The Quantum Insider - June 24th, 2025 [June 24th, 2025]
- Why Photonics is Essential for the Future of Quantum Innovation - AZoQuantum - June 24th, 2025 [June 24th, 2025]
- Microsoft Unveils a New 4-Dimension Geometrical Code for Quantum Error Correction - Quantum Computing Report - June 24th, 2025 [June 24th, 2025]
- A quantum satellite computer was launched into space for the first time: it was delivered to orbit by a SpaceX rocket - dev.ua - June 24th, 2025 [June 24th, 2025]