Rewriting the quantum-computer blueprint – Nature.com
ParityQC licenses the intellectual property for it's quantum-computing architecture to other companies.Credit: Elisabeth Fitsch
Parity Quantum Computing in Innsbruck, Austria, spun off from the University of Innsbruck, Austria, in 2020.
In 2013, Wolfgang Lechner had an idea that he thought was probably too good to be true: a mathematical trick that would change how quantum computers encode information. If it worked, he reasoned, it would be a big deal. Quantum computers can, in theory, perform certain calculations many times faster than conventional digital computers, but they are extremely sensitive to interference and are hard to scale up. Lechners brainwave was to provide these computers with an architecture based on the concept of parity. This could transform them from small laboratory devices into vast, commercial machines capable of solving problems that are currently intractable.
Read more about The Spinoff Prize
Lechner, a physicist at the University of Innsbruck in Austria, discussed the proposal with a colleague, but they managed to persuade themselves that it was a non-starter. Over the next two years he kept turning the idea over in his mind, and says it became an obsession. Eventually, at 3 a.m. in a hotel room, he had a flash of inspiration that could mean his parity-based approach should work after all.
He quickly filed a patent and, just six months later, received an offer for the intellectual property from a large technology company. (Lechner declined to reveal the company or the size of the offer.) This told him that the architecture had commercial potential, and that it might be better to try to reap the rewards directly. So he and his colleagues at the University of Innsbruck decided to reject the offer and set up a spin-off company. ParityQC launched in 2020, and has been named a finalist in The Spinoff Prize 2023.
Three years on from its set-up, the company now employs about 30 people. It has landed sizeable contracts from high-tech manufacturers and from governments with one deal alone worth several tens of millions of euros. According to Lechners co-chief-executive Magdalena Hauser, this early success combined with grants from the European Union and the governments of Austria and Germany has meant that the company has avoided having to drum up support from venture capitalists. We made revenue from the start, says Hauser.
Quantum computers owe their calculating prowess to certain quantum phenomena of atomic-scale objects. These computers encode data in the form of qubits, which can exist as 0 and 1 at the same time unlike conventional bits, which exist as only one or the other. Multiple qubits can be entangled to generate all possible values from a string of 0s and 1s simultaneously, enabling parallel processing that is not possible with classical computers.
Part of Nature Outlook: The Spinoff Prize 2023
But qubits are fragile. Their states can be disrupted by the slightest amount of heat or other interference. Their durability varies according to the kind of physical qubit used ions, neutral atoms, superconducting circuits or quantum dots. They might remain intact for a few seconds if they are perfectly isolated or might disappear after milliseconds if they interact with other qubits during a calculation.
A second major issue for quantum computing is the spatial properties of qubits. The physical processes that link qubits to one another usually occur only over very short distances, such as the overlap of two electron clouds around atomic nuclei or the connection of two superconducting circuits. This means that each qubit typically interacts only with its nearest neighbours, rather than qubits farther away.
ParityQCs architecture helps quantum computers to deal with both limitations. It does so by changing how the data are encoded in qubits. Rather than representing the values of individual logical qubits as specified by the program being executed physical qubits instead record the relationship between pairs of logical qubits in terms of parity. If the qubits in a pair have the same value, then the parity is 1; if the values are different, then the parity is 0 (See Blueprint for quantum computing).
Credit: Alisdair MacDonald
This change in encoding to a system based on parity transforms all operations involving several qubits, no matter how far apart they are, into the equivalent of local interactions. That eliminates the need for interactions over long distances. And operations can be carried out on all qubits in a computer simultaneously, maximizing the complexity of calculations that can be performed in the brief period during which qubits remain intact.
Since dreaming up the parity architecture1, Lechner and his colleagues at ParityQC and the University of Innsbruck have gone on to have dozens of papers published that elaborate the scheme. In one of the most recent2, they have proposed a specific set of operations, or gates, that rely on parity encoding and have confirmed3 that this set would speed up several of the most important quantum algorithms devised so far. These include an algorithm that would allow quantum computers to find the prime factors of large numbers, posing a threat to Internet encryption schemes that rely on the difficulty of such calculations.
To turn this knowledge into revenue, ParityQC licenses its intellectual property to hardware developers so that they can build chips incorporating the architecture. According to Hauser, the company has sold licences to Japanese electronics giant NEC to produce a superconducting quantum chip, and has entered several consortia that were set up in response to the German government investing 2 billion (US$2.2 billion) to fund the development of quantum technologies.
Notably, the company jointly received an 83-million contract awarded by the German Aerospace Center in Cologne to build ion-trap computers. Along with manufacturers eleQtron in Siegen, Germany, and NXP Semiconductors in Eindhoven, the Netherlands, it won the contract to build a 10-qubit demonstration computer and then develop modular and scalable devices. (This type of computer is also being developed by another The Spinoff Prize 2023 finalist, Alpine Quantum Technologies, although Alpine is not part of ParityQCs collaboration.)
Sue Sundstrom, a start-up coach based in Clevedon, UK, and a judge for The Spinoff Prize 2023, is impressed by what she describes as ParityQCs analysis of how previously radically different technologies have been able to get into the market and make money. She notes a parallel with Arm in Cambridge, UK, a firm which started selling blueprints of chips for reduced-instruction set computers in the 1980s. She also praises the hiring of people with commercial expertise. For quantum companies that is quite rare, she says.
Fellow judge Emily MacKay, who is a technology strategist at Siemens Energy and is based in Cambridge, UK, applauds ParityQCs efforts to make its architecture scalable and applicable to various types of hardware. Their research approach is future-proofing as far as possible, she says. (Her comments on ParityQC do not necessarily reflect the views of Siemens Energy.)
But MacKay adds that the company faces an elephant in the room having to decide whether to compete or collaborate with the worlds biggest provider of cloud computing, Amazon Web Services. Lechner says that ParityQC would be an ideal supplier to the larger firm, arguing that its parity architecture is well suited to Amazon which plans to build quantum computers that mitigate errors, partly in hardware and partly through software. We are not in contact [with Amazon] at the moment but would be happy to [be], he says.
However, not all specialists are convinced that the parity architecture will achieve its desired results, at least when it comes to solving optimization problems (such as maximizing the return from a financial portfolio or minimizing the distance travelled by goods vehicles). Itay Hen, a numerical physicist at the University of Southern California in Los Angeles, questions whether a quantum computer fitted with the architecture could solve such problems more quickly than would a classical computer given what he says is the absence of any quantum algorithm that guarantees such an outcome. Even if we had the perfect quantum computer, we still wouldnt know whether it is better than a laptop, he says.
Lechner acknowledges that there is no general proof showing that quantum computers have an advantage over their classical counterparts when it comes to optimization problems. But he is confident that at some point in the next few years perhaps by around 2030 the parity architecture will enable a quantum computer to pass this milestone for one or more problems, with classically impossible optimization made possible by new algorithms that emerge. That is our dream, Lechner says, and the target we are working towards.
Here is the original post:
Rewriting the quantum-computer blueprint - Nature.com
- The 3 Best Quantum Computing Stocks to Buy for 2026 - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- Safeguard Your WAN from Quantum Computing Threats - Cisco Blogs - January 14th, 2026 [January 14th, 2026]
- PsiQuantum Collaborating with Airbus to Advance Quantum Computing for Aerospace - HPCwire - January 14th, 2026 [January 14th, 2026]
- Putting Quantum Computing to the Test - University of Pittsburgh - January 14th, 2026 [January 14th, 2026]
- Xanadu and Thorlabs Partner to Advance Optical Controls for Photonic Quantum Computing - HPCwire - January 14th, 2026 [January 14th, 2026]
- Why Quantum Computers Are Inherently Reversible (And Why That Matters) - Quantum Zeitgeist - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- BTQ Technologies Added to VanEck Quantum Computing UCITS ETF, Expanding European Access to BTQ Through a Regulated UCITS Wrapper - PR Newswire - January 14th, 2026 [January 14th, 2026]
- Singapore and Japan team up on quantum computing - Computer Weekly - January 14th, 2026 [January 14th, 2026]
- Will Quantum Computing Stocks Become the AI Stocks of 2026? - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- Silicon vibrations add a new twist to dark matter research and quantum computing - The Brighter Side of News - January 14th, 2026 [January 14th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - AOL.com - January 14th, 2026 [January 14th, 2026]
- Yaqumo Inc. and Entropica Labs Sign MOU, Witnessed by Singapore and Japan Governments, to Accelerate Fault-Tolerant Quantum Computing - The Quantum... - January 14th, 2026 [January 14th, 2026]
- Quantum Advantage Has Likely Been Achieved The Debate Is Over What Counts - The Quantum Insider - January 14th, 2026 [January 14th, 2026]
- Will quantum computing stocks become the AI stocks of 2026? - MSN - January 14th, 2026 [January 14th, 2026]
- Quantum Computing Stocks To Add to Your Watchlist - January 12th - MarketBeat - January 14th, 2026 [January 14th, 2026]
- Quantum computing revives debate over Bitcoins long-term security - Mugglehead Magazine - January 14th, 2026 [January 14th, 2026]
- Quantum AI: Telco's Next Big Thing or Expensive Distraction? - Telecoms - January 14th, 2026 [January 14th, 2026]
- What does a quantum computer sound like? This artist and scientist are about to find out - Financial Times - January 11th, 2026 [January 11th, 2026]
- Bipartisan Sens. Give Quantum Reauthorization Act Another Chance - MeriTalk - January 11th, 2026 [January 11th, 2026]
- 3 Quantum Computing Stocks That Could Make a Millionaire - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Infleqtion and Churchill X Move Forward on SPAC Combination - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- Quantum computing has advantages over traditional, but still in early innings: BMO (IONQ:NYSE) - Seeking Alpha - January 9th, 2026 [January 9th, 2026]
- D-Wave Buys Quantum Circuits in Shift to Higher Gear - EE Times - January 9th, 2026 [January 9th, 2026]
- Beyond the Hype: 5 Reasons Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Can Crash in 2026 - Nasdaq - January 9th, 2026 [January 9th, 2026]
- Quantum neural network may be able to cheat the uncertainty principle - New Scientist - January 9th, 2026 [January 9th, 2026]
- Q&A: What does cybersecurity look like in the quantum age? - Penn State University - January 9th, 2026 [January 9th, 2026]
- D-Wave Demo At CES 2026 And The Energy Efficiency Of Quantum Computing - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Quantum Computers Extract Scattering Phase Shift In One-Dimensional Systems Using Integrated Correlation Functions - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- How John Clarke's Nobel Prize-Winning Research Paved the Way for Quantum Computing - Berkeley Lab News Center (.gov) - January 9th, 2026 [January 9th, 2026]
- Circle Examines How Crypto and Web3 Ecosystems are Preparing Blockchains for the Quantum Era - Crowdfund Insider - January 9th, 2026 [January 9th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Quantum computing is closer than you think - Federal News Network - January 9th, 2026 [January 9th, 2026]
- Quantum computing company D-Wave acquires new tech in major merger - Washington Times - January 9th, 2026 [January 9th, 2026]
- Josephson junctions quantum computing building blocks are possible with only one superconductor, experiment confirms - Technology Org - January 9th, 2026 [January 9th, 2026]
- After a Year of Quantum Awareness, 2026 Becomes the Year of Quantum Security - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- The best quantum computing stock to buy hand over fist in 2026 - MSN - January 9th, 2026 [January 9th, 2026]
- Google Willow: The secrets of the world's most powerful quantum computer - BBC - January 8th, 2026 [January 8th, 2026]
- D-Wave: Quantums First Real Revenue Winner (NYSE:QBTS) - Seeking Alpha - January 8th, 2026 [January 8th, 2026]
- D-Wave to Buy Quantum Circuits for $550 Million. Useful Computers Are Coming to Market. - Barron's - January 8th, 2026 [January 8th, 2026]
- DARPA seeks universal translator between different kinds of quantum computer - Breaking Defense - January 8th, 2026 [January 8th, 2026]
- Royal Bank, Telus back $130-million financing by quantum developer Photonic - The Globe and Mail - January 8th, 2026 [January 8th, 2026]
- Qubits Can be Cloned: Scientists Discover First Method to Safely Back up Quantum Information - The Quantum Insider - January 8th, 2026 [January 8th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- Fredkin And Toffoli: The Architects Of Reversible Computation - Quantum Zeitgeist - January 8th, 2026 [January 8th, 2026]
- Quantum Resistance LLC on the Future of Digital Security in a World of Emerging Quantum Computing - International Business Times - January 8th, 2026 [January 8th, 2026]
- Moscow State University and Rosatom Test 72-Qubit Neutral-Atom Quantum Prototype - Quantum Computing Report - January 8th, 2026 [January 8th, 2026]
- Prediction: These 4 quantum computing stocks will skyrocket in 2026 - MSN - January 8th, 2026 [January 8th, 2026]
- D-Wave Rises On Quantum First - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- Are Quantum Computing ETFs the Safest Bet for 10-Year Growth? - Nasdaq - January 8th, 2026 [January 8th, 2026]
- Tech and compliance 2026: What to watch for in AI, cybersecurity and quantum computing - Compliance Week - January 8th, 2026 [January 8th, 2026]
- Using microwave pulses to plug leaks in quantum computers makes them more reliable - Phys.org - December 29th, 2025 [December 29th, 2025]
- 5 Major Quantum Computing Breakthroughs that Shaped 2025 - TipRanks - December 29th, 2025 [December 29th, 2025]
- D-Wave stock slides into year-end as quantum peers retreat in thin trade - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Trends in 2025: Data Reveals Hardware Bets, Cloud Growth And Security Focus - The Quantum Insider - December 29th, 2025 [December 29th, 2025]
- The Neglecton: How Mathematical 'Garbage' Saved The Quantum Computer - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Quantum science and technology: highlights of 2025 - Physics World - December 29th, 2025 [December 29th, 2025]
- Are These 2 Quantum Computing Stocks the Key to Decades of Wealth? - The Motley Fool - December 29th, 2025 [December 29th, 2025]
- The Man Who Knew Too Much: Why Ettore Majoranas 1938 disappearance still haunts quantum computing. - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Breaking The Code: How Peter Shor Proved Quantum Power Was Real - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Opinion: Quantum computing is the stock markets next big tech play and these stocks are still cheap - MarketWatch - December 29th, 2025 [December 29th, 2025]
- Quantum computing made measurable progress toward real-world use in 2025 - TechSpot - December 29th, 2025 [December 29th, 2025]
- IonQ drops with quantum peers into year-end, as investors weigh next catalysts - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Forget Rigetti Computing: This Quantum Stock Offers a Far Better Risk-Reward Right Now - Finviz - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Stocks: IonQ, Rigetti, D-Wave and QUBT Slide Into Year-EndWhat to Watch Before Mondays Open - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Wedbush Initiates Rigetti Computing (RGTI) with Outperform Rating Highlighting Decadelong Expertise in Superconducting Qubit Technology - Yahoo... - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Works - Now Investors Will See If the Stocks Do Too - - December 29th, 2025 [December 29th, 2025]
- If India moves fast on quantum, we can lead next tech revolution - Times of India - December 27th, 2025 [December 27th, 2025]
- Chile Sets 10-Year Strategy to Build Quantum And Biotechnology Industries - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Grover's Search: The Algorithm That Changed The Logic Of Discovery - Quantum Zeitgeist - December 27th, 2025 [December 27th, 2025]
- China Demonstrates Quantum Error Correction Using Microwaves, Narrowing Gap With Google - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Prediction: Rigetti Computing Stock Is Going to Plunge in 2026 - The Motley Fool - December 27th, 2025 [December 27th, 2025]
- Guest Post Chile and Quantum Technologies: When Strategy Is Built on Real Capabilities - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Prediction: Rigetti Computing Stock Is Going to Plunge in 2026 - Nasdaq - December 27th, 2025 [December 27th, 2025]
- My Top 3 Quantum Computing Stocks to Buy in December - The Globe and Mail - December 27th, 2025 [December 27th, 2025]
- D-Wave Quantum (QBTS) Stock Slides After Fridays Selloff: Latest News, Forecasts, Analyst Targets, and What to Watch Before Monday - ts2.tech - December 27th, 2025 [December 27th, 2025]
- The Man Who Reimagined Math: David Deutsch And The Universal Quantum Computer - Quantum Zeitgeist - December 27th, 2025 [December 27th, 2025]
- Quantum Computer Company Xanadu Is Set to Go Public: Should Investors Buy the IPO? - Yahoo! Finance Canada - December 27th, 2025 [December 27th, 2025]