Rewriting the quantum-computer blueprint – Nature.com
ParityQC licenses the intellectual property for it's quantum-computing architecture to other companies.Credit: Elisabeth Fitsch
Parity Quantum Computing in Innsbruck, Austria, spun off from the University of Innsbruck, Austria, in 2020.
In 2013, Wolfgang Lechner had an idea that he thought was probably too good to be true: a mathematical trick that would change how quantum computers encode information. If it worked, he reasoned, it would be a big deal. Quantum computers can, in theory, perform certain calculations many times faster than conventional digital computers, but they are extremely sensitive to interference and are hard to scale up. Lechners brainwave was to provide these computers with an architecture based on the concept of parity. This could transform them from small laboratory devices into vast, commercial machines capable of solving problems that are currently intractable.
Read more about The Spinoff Prize
Lechner, a physicist at the University of Innsbruck in Austria, discussed the proposal with a colleague, but they managed to persuade themselves that it was a non-starter. Over the next two years he kept turning the idea over in his mind, and says it became an obsession. Eventually, at 3 a.m. in a hotel room, he had a flash of inspiration that could mean his parity-based approach should work after all.
He quickly filed a patent and, just six months later, received an offer for the intellectual property from a large technology company. (Lechner declined to reveal the company or the size of the offer.) This told him that the architecture had commercial potential, and that it might be better to try to reap the rewards directly. So he and his colleagues at the University of Innsbruck decided to reject the offer and set up a spin-off company. ParityQC launched in 2020, and has been named a finalist in The Spinoff Prize 2023.
Three years on from its set-up, the company now employs about 30 people. It has landed sizeable contracts from high-tech manufacturers and from governments with one deal alone worth several tens of millions of euros. According to Lechners co-chief-executive Magdalena Hauser, this early success combined with grants from the European Union and the governments of Austria and Germany has meant that the company has avoided having to drum up support from venture capitalists. We made revenue from the start, says Hauser.
Quantum computers owe their calculating prowess to certain quantum phenomena of atomic-scale objects. These computers encode data in the form of qubits, which can exist as 0 and 1 at the same time unlike conventional bits, which exist as only one or the other. Multiple qubits can be entangled to generate all possible values from a string of 0s and 1s simultaneously, enabling parallel processing that is not possible with classical computers.
Part of Nature Outlook: The Spinoff Prize 2023
But qubits are fragile. Their states can be disrupted by the slightest amount of heat or other interference. Their durability varies according to the kind of physical qubit used ions, neutral atoms, superconducting circuits or quantum dots. They might remain intact for a few seconds if they are perfectly isolated or might disappear after milliseconds if they interact with other qubits during a calculation.
A second major issue for quantum computing is the spatial properties of qubits. The physical processes that link qubits to one another usually occur only over very short distances, such as the overlap of two electron clouds around atomic nuclei or the connection of two superconducting circuits. This means that each qubit typically interacts only with its nearest neighbours, rather than qubits farther away.
ParityQCs architecture helps quantum computers to deal with both limitations. It does so by changing how the data are encoded in qubits. Rather than representing the values of individual logical qubits as specified by the program being executed physical qubits instead record the relationship between pairs of logical qubits in terms of parity. If the qubits in a pair have the same value, then the parity is 1; if the values are different, then the parity is 0 (See Blueprint for quantum computing).
Credit: Alisdair MacDonald
This change in encoding to a system based on parity transforms all operations involving several qubits, no matter how far apart they are, into the equivalent of local interactions. That eliminates the need for interactions over long distances. And operations can be carried out on all qubits in a computer simultaneously, maximizing the complexity of calculations that can be performed in the brief period during which qubits remain intact.
Since dreaming up the parity architecture1, Lechner and his colleagues at ParityQC and the University of Innsbruck have gone on to have dozens of papers published that elaborate the scheme. In one of the most recent2, they have proposed a specific set of operations, or gates, that rely on parity encoding and have confirmed3 that this set would speed up several of the most important quantum algorithms devised so far. These include an algorithm that would allow quantum computers to find the prime factors of large numbers, posing a threat to Internet encryption schemes that rely on the difficulty of such calculations.
To turn this knowledge into revenue, ParityQC licenses its intellectual property to hardware developers so that they can build chips incorporating the architecture. According to Hauser, the company has sold licences to Japanese electronics giant NEC to produce a superconducting quantum chip, and has entered several consortia that were set up in response to the German government investing 2 billion (US$2.2 billion) to fund the development of quantum technologies.
Notably, the company jointly received an 83-million contract awarded by the German Aerospace Center in Cologne to build ion-trap computers. Along with manufacturers eleQtron in Siegen, Germany, and NXP Semiconductors in Eindhoven, the Netherlands, it won the contract to build a 10-qubit demonstration computer and then develop modular and scalable devices. (This type of computer is also being developed by another The Spinoff Prize 2023 finalist, Alpine Quantum Technologies, although Alpine is not part of ParityQCs collaboration.)
Sue Sundstrom, a start-up coach based in Clevedon, UK, and a judge for The Spinoff Prize 2023, is impressed by what she describes as ParityQCs analysis of how previously radically different technologies have been able to get into the market and make money. She notes a parallel with Arm in Cambridge, UK, a firm which started selling blueprints of chips for reduced-instruction set computers in the 1980s. She also praises the hiring of people with commercial expertise. For quantum companies that is quite rare, she says.
Fellow judge Emily MacKay, who is a technology strategist at Siemens Energy and is based in Cambridge, UK, applauds ParityQCs efforts to make its architecture scalable and applicable to various types of hardware. Their research approach is future-proofing as far as possible, she says. (Her comments on ParityQC do not necessarily reflect the views of Siemens Energy.)
But MacKay adds that the company faces an elephant in the room having to decide whether to compete or collaborate with the worlds biggest provider of cloud computing, Amazon Web Services. Lechner says that ParityQC would be an ideal supplier to the larger firm, arguing that its parity architecture is well suited to Amazon which plans to build quantum computers that mitigate errors, partly in hardware and partly through software. We are not in contact [with Amazon] at the moment but would be happy to [be], he says.
However, not all specialists are convinced that the parity architecture will achieve its desired results, at least when it comes to solving optimization problems (such as maximizing the return from a financial portfolio or minimizing the distance travelled by goods vehicles). Itay Hen, a numerical physicist at the University of Southern California in Los Angeles, questions whether a quantum computer fitted with the architecture could solve such problems more quickly than would a classical computer given what he says is the absence of any quantum algorithm that guarantees such an outcome. Even if we had the perfect quantum computer, we still wouldnt know whether it is better than a laptop, he says.
Lechner acknowledges that there is no general proof showing that quantum computers have an advantage over their classical counterparts when it comes to optimization problems. But he is confident that at some point in the next few years perhaps by around 2030 the parity architecture will enable a quantum computer to pass this milestone for one or more problems, with classically impossible optimization made possible by new algorithms that emerge. That is our dream, Lechner says, and the target we are working towards.
Here is the original post:
Rewriting the quantum-computer blueprint - Nature.com
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]