Revolutionizing Manufacturing with High-Performance Computing and Supercomputers – ENGINEERING.com
Oak Ridge National Laboratory Manufacturing Demonstration Facility. (Source: ORNL.)
Producing products quickly, efficiently and at low cost is a focal point for the manufacturing sector. There are a number of technologies that companies are using to achieve those goals including high performance computing (HPC) and supercomputing. The allure of cheap design and production optimization is strong, but a central barrier is the upfront costs of an enterprise owning an HPC or supercomputing machine.
Thats why in 2021, The U.S. Department of Energy began providing companies with HPC access via the High Performance Computing for Energy Innovation program. In addition to providing funding opportunities, the program allows companies to partner with national laboratories that have advanced computing resources up to 100 times more powerful than typical enterprise systems available for private sector use.
HPC and supercomputing technologies could usher in a manufacturing revolution marked by faster product development, improved product quality, reduced costs and increased efficiency.
Ideas sometimes work better in theory than in practice. Being able to visualize how a part or product will behave in the real world prior to the production process can save design teams a lot of headaches.
HPC and supercomputing technologies enable manufacturers to simulate and model products and production processes at a scale that was previously impossible. This allows manufacturers to design better products and optimize manufacturing processes. For example, in the automotive industry, manufacturers use HPC to simulate vehicle crashes and predict the behavior of materials under extreme conditions, which helps in designing safer and more durable vehicles.
A recent example is Tesla building its custom Dojo supercomputer to expand neural net training capacity using video data to advance computer vision technology to make self-driving vehicles safer.
In the aerospace industry, manufacturers use HPC to simulate how certain aircraft components will perform under varying conditions. Such simulations help manufacturers design more fuel efficient and reliable aircraft. For the semiconductor industry, HPC can help optimize performance through design simulation. Even complex systems such as cross-regional transportation networks can benefit from HPC simulation.
Design simulation is a primary area where HPC and supercomputers can help the manufacturing process. However, advanced simulation technologies have other uses during production and post-production.
Once products and systems are up and running, they need to be maintained. Simulation technologies can help pinpoint what maintenance needs to be performed in order to prevent equipment failures, which can be costly.
HPC and supercomputing simulations can help optimize the production process by helping manufacturers identify bottlenecks and efficiencies. For example, in the chemical industry, manufacturers use simulation and modeling technology to optimize the production process for chemicals such as polymers and plastics. This enables them to reduce the amount of raw materials and energy required to produce a given amount of product, resulting in significant cost savings. Similarly, advanced simulation technologies can help manufacturers like automakers simulate the performance of systems such as brakes under stressful, real-world-like conditions to correct any defects or deficiencies that the models identify.
In high-risk factory conditions, advanced simulations can also help train employees on equipment and tasks prior to their doing so in a real production environment. This can help reduce the risk of accidents while also enhancing worker productivity.
Getting products to market as fast as possible is a top concern for manufacturers. HPC and supercomputers can help companies stay ahead of the competition. For example, in the pharmaceutical industry, they can accelerate drug discovery by simulating the behavior of molecules and predicting their effectiveness at targeting diseases. This helps quicken the pace that drugs can move to clinical trials and ultimately enter the market.
Several studies and case studies demonstrate the benefits of using HPC and supercomputers to accelerate product development in manufacturing. A study conducted by the Council on Competitiveness found that the use of HPC and supercomputers in product design and development can reduce product development time and reduce the number of physical prototypes needed.
The U.S. Department of Energy's (DOE) High Performance Computing for Manufacturing program has funded several projects that demonstrate the benefits of using HPC and supercomputers in manufacturing. The Partnership for Advanced Computing in Europe (PRACE) has also funded several projects in the same vein.
Hewlett Packard Enterprise has made its HPE Cray portfolio available to the enterprise. The new HPE Cray EX and HPE Cray XD supercomputers speed up time-to-insight with massive performance and AI-at-scale benefits, delivered in a smaller data center footprint and at a lower price point. This allows manufacturers and other industries to harness insights, solve problems and innovate faster by delivering energy-efficient supercomputers in a smaller form factor and at a lower cost.
The simulation and modeling power of HPC and supercomputers helps reduce manufacturing costs by enabling the avoidance of errors during prototyping, reducing the time and resources needed for design and development and optimizing the supply chain.
The Council on Competitiveness found that using HPC and supercomputers can reduce design and development costs. By optimizing designs through simulation and modeling, manufacturers can avoid costly mistakes that may arise during physical prototyping and testing.
The Oak Ridge National Laboratory (ORNL) is helping manufacturers by developing innovative approaches to using its Spallation Neutron Source (SNS) supercomputer and the High Flux Isotope Reactor (HFIR) to allow researchers to examine microstructures to better design new materials and fabrication methods, and leverage multidisciplinary expertise for the development of new bio-based materials. These efforts are geared toward driving economic competitiveness, energy efficiency and productivity.
HPC and supercomputing systems are also being combined with robotics and automation to enhance manufacturing.
The technologies can analyze real-time data from sensors in factory environments so that robots can use the insights to adapt to changing conditions while maintaining accuracy and efficiency. The data analysis can also be used to optimize robotic systems for greater performance and efficiency. HPC and supercomputers can be used for virtual commissioning, allowing manufacturers to test and optimize robotic systems in a virtual environment before they are deployed in the real world. Supercomputers are also used to train and deploy machine learning models that can direct robots and autonomous systems to make more precise movements and decisions without human intervention.
A number of companies are using this approach, including GE, who has developed a software platform called Predix that combines HPC and supercomputers with the Internet of Things (IoT) to optimize the performance of its manufacturing equipment. This has helped to reduce downtime and improve overall efficiency. Siemens is using HPC and supercomputers to develop virtual commissioning tools such as the Tecnomatix Process Simulate Commissioning and Tecnomatix Plant Simulation Commissioning, which enable manufacturers to test and optimize robotic systems in a virtual environment.
The manufacturing sector is poised for a revolution driven by HPC, supercomputers and AI. Part of that will likely involve the advancement of quantum computing, which has applications for the manufacturing sector as well. Because quantum computers make simultaneous calculations versus the sequential calculations of classical machines, they could enable factory robots to move with greater efficiency and precision, driving better throughput for more complicated tasks. Quantum computers could also advance the creation of new materials for use as semiconductors, industrial production catalysts, electronic components, sustainable fuels, pharmaceuticals and consumer products. As these technologies continue to evolve, it is likely that we will see even more advanced and innovative applications in the manufacturing sector.
This story is one in a series underwritten by AMD and produced independently by the editors of engineering.com.Subscribe hereto receive informative infographics, handy fact sheets, technology recommendations and more in AMDs data center insights newsletter.
Continued here:
Revolutionizing Manufacturing with High-Performance Computing and Supercomputers - ENGINEERING.com
- The 3 Best Quantum Computing Stocks to Buy for 2026 - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- Safeguard Your WAN from Quantum Computing Threats - Cisco Blogs - January 14th, 2026 [January 14th, 2026]
- PsiQuantum Collaborating with Airbus to Advance Quantum Computing for Aerospace - HPCwire - January 14th, 2026 [January 14th, 2026]
- Putting Quantum Computing to the Test - University of Pittsburgh - January 14th, 2026 [January 14th, 2026]
- Xanadu and Thorlabs Partner to Advance Optical Controls for Photonic Quantum Computing - HPCwire - January 14th, 2026 [January 14th, 2026]
- Why Quantum Computers Are Inherently Reversible (And Why That Matters) - Quantum Zeitgeist - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- BTQ Technologies Added to VanEck Quantum Computing UCITS ETF, Expanding European Access to BTQ Through a Regulated UCITS Wrapper - PR Newswire - January 14th, 2026 [January 14th, 2026]
- Singapore and Japan team up on quantum computing - Computer Weekly - January 14th, 2026 [January 14th, 2026]
- Will Quantum Computing Stocks Become the AI Stocks of 2026? - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- Silicon vibrations add a new twist to dark matter research and quantum computing - The Brighter Side of News - January 14th, 2026 [January 14th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - AOL.com - January 14th, 2026 [January 14th, 2026]
- Yaqumo Inc. and Entropica Labs Sign MOU, Witnessed by Singapore and Japan Governments, to Accelerate Fault-Tolerant Quantum Computing - The Quantum... - January 14th, 2026 [January 14th, 2026]
- Quantum Advantage Has Likely Been Achieved The Debate Is Over What Counts - The Quantum Insider - January 14th, 2026 [January 14th, 2026]
- Will quantum computing stocks become the AI stocks of 2026? - MSN - January 14th, 2026 [January 14th, 2026]
- Quantum Computing Stocks To Add to Your Watchlist - January 12th - MarketBeat - January 14th, 2026 [January 14th, 2026]
- Quantum computing revives debate over Bitcoins long-term security - Mugglehead Magazine - January 14th, 2026 [January 14th, 2026]
- Quantum AI: Telco's Next Big Thing or Expensive Distraction? - Telecoms - January 14th, 2026 [January 14th, 2026]
- What does a quantum computer sound like? This artist and scientist are about to find out - Financial Times - January 11th, 2026 [January 11th, 2026]
- Bipartisan Sens. Give Quantum Reauthorization Act Another Chance - MeriTalk - January 11th, 2026 [January 11th, 2026]
- 3 Quantum Computing Stocks That Could Make a Millionaire - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Infleqtion and Churchill X Move Forward on SPAC Combination - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- Quantum computing has advantages over traditional, but still in early innings: BMO (IONQ:NYSE) - Seeking Alpha - January 9th, 2026 [January 9th, 2026]
- D-Wave Buys Quantum Circuits in Shift to Higher Gear - EE Times - January 9th, 2026 [January 9th, 2026]
- Beyond the Hype: 5 Reasons Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Can Crash in 2026 - Nasdaq - January 9th, 2026 [January 9th, 2026]
- Quantum neural network may be able to cheat the uncertainty principle - New Scientist - January 9th, 2026 [January 9th, 2026]
- Q&A: What does cybersecurity look like in the quantum age? - Penn State University - January 9th, 2026 [January 9th, 2026]
- D-Wave Demo At CES 2026 And The Energy Efficiency Of Quantum Computing - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Quantum Computers Extract Scattering Phase Shift In One-Dimensional Systems Using Integrated Correlation Functions - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- How John Clarke's Nobel Prize-Winning Research Paved the Way for Quantum Computing - Berkeley Lab News Center (.gov) - January 9th, 2026 [January 9th, 2026]
- Circle Examines How Crypto and Web3 Ecosystems are Preparing Blockchains for the Quantum Era - Crowdfund Insider - January 9th, 2026 [January 9th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Quantum computing is closer than you think - Federal News Network - January 9th, 2026 [January 9th, 2026]
- Quantum computing company D-Wave acquires new tech in major merger - Washington Times - January 9th, 2026 [January 9th, 2026]
- Josephson junctions quantum computing building blocks are possible with only one superconductor, experiment confirms - Technology Org - January 9th, 2026 [January 9th, 2026]
- After a Year of Quantum Awareness, 2026 Becomes the Year of Quantum Security - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- The best quantum computing stock to buy hand over fist in 2026 - MSN - January 9th, 2026 [January 9th, 2026]
- Google Willow: The secrets of the world's most powerful quantum computer - BBC - January 8th, 2026 [January 8th, 2026]
- D-Wave: Quantums First Real Revenue Winner (NYSE:QBTS) - Seeking Alpha - January 8th, 2026 [January 8th, 2026]
- D-Wave to Buy Quantum Circuits for $550 Million. Useful Computers Are Coming to Market. - Barron's - January 8th, 2026 [January 8th, 2026]
- DARPA seeks universal translator between different kinds of quantum computer - Breaking Defense - January 8th, 2026 [January 8th, 2026]
- Royal Bank, Telus back $130-million financing by quantum developer Photonic - The Globe and Mail - January 8th, 2026 [January 8th, 2026]
- Qubits Can be Cloned: Scientists Discover First Method to Safely Back up Quantum Information - The Quantum Insider - January 8th, 2026 [January 8th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- Fredkin And Toffoli: The Architects Of Reversible Computation - Quantum Zeitgeist - January 8th, 2026 [January 8th, 2026]
- Quantum Resistance LLC on the Future of Digital Security in a World of Emerging Quantum Computing - International Business Times - January 8th, 2026 [January 8th, 2026]
- Moscow State University and Rosatom Test 72-Qubit Neutral-Atom Quantum Prototype - Quantum Computing Report - January 8th, 2026 [January 8th, 2026]
- Prediction: These 4 quantum computing stocks will skyrocket in 2026 - MSN - January 8th, 2026 [January 8th, 2026]
- D-Wave Rises On Quantum First - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- Are Quantum Computing ETFs the Safest Bet for 10-Year Growth? - Nasdaq - January 8th, 2026 [January 8th, 2026]
- Tech and compliance 2026: What to watch for in AI, cybersecurity and quantum computing - Compliance Week - January 8th, 2026 [January 8th, 2026]
- Using microwave pulses to plug leaks in quantum computers makes them more reliable - Phys.org - December 29th, 2025 [December 29th, 2025]
- 5 Major Quantum Computing Breakthroughs that Shaped 2025 - TipRanks - December 29th, 2025 [December 29th, 2025]
- D-Wave stock slides into year-end as quantum peers retreat in thin trade - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Trends in 2025: Data Reveals Hardware Bets, Cloud Growth And Security Focus - The Quantum Insider - December 29th, 2025 [December 29th, 2025]
- The Neglecton: How Mathematical 'Garbage' Saved The Quantum Computer - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Quantum science and technology: highlights of 2025 - Physics World - December 29th, 2025 [December 29th, 2025]
- Are These 2 Quantum Computing Stocks the Key to Decades of Wealth? - The Motley Fool - December 29th, 2025 [December 29th, 2025]
- The Man Who Knew Too Much: Why Ettore Majoranas 1938 disappearance still haunts quantum computing. - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Breaking The Code: How Peter Shor Proved Quantum Power Was Real - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Opinion: Quantum computing is the stock markets next big tech play and these stocks are still cheap - MarketWatch - December 29th, 2025 [December 29th, 2025]
- Quantum computing made measurable progress toward real-world use in 2025 - TechSpot - December 29th, 2025 [December 29th, 2025]
- IonQ drops with quantum peers into year-end, as investors weigh next catalysts - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Forget Rigetti Computing: This Quantum Stock Offers a Far Better Risk-Reward Right Now - Finviz - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Stocks: IonQ, Rigetti, D-Wave and QUBT Slide Into Year-EndWhat to Watch Before Mondays Open - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Wedbush Initiates Rigetti Computing (RGTI) with Outperform Rating Highlighting Decadelong Expertise in Superconducting Qubit Technology - Yahoo... - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Works - Now Investors Will See If the Stocks Do Too - - December 29th, 2025 [December 29th, 2025]
- If India moves fast on quantum, we can lead next tech revolution - Times of India - December 27th, 2025 [December 27th, 2025]
- Chile Sets 10-Year Strategy to Build Quantum And Biotechnology Industries - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Grover's Search: The Algorithm That Changed The Logic Of Discovery - Quantum Zeitgeist - December 27th, 2025 [December 27th, 2025]
- China Demonstrates Quantum Error Correction Using Microwaves, Narrowing Gap With Google - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Prediction: Rigetti Computing Stock Is Going to Plunge in 2026 - The Motley Fool - December 27th, 2025 [December 27th, 2025]
- Guest Post Chile and Quantum Technologies: When Strategy Is Built on Real Capabilities - The Quantum Insider - December 27th, 2025 [December 27th, 2025]
- Prediction: Rigetti Computing Stock Is Going to Plunge in 2026 - Nasdaq - December 27th, 2025 [December 27th, 2025]
- My Top 3 Quantum Computing Stocks to Buy in December - The Globe and Mail - December 27th, 2025 [December 27th, 2025]
- D-Wave Quantum (QBTS) Stock Slides After Fridays Selloff: Latest News, Forecasts, Analyst Targets, and What to Watch Before Monday - ts2.tech - December 27th, 2025 [December 27th, 2025]
- The Man Who Reimagined Math: David Deutsch And The Universal Quantum Computer - Quantum Zeitgeist - December 27th, 2025 [December 27th, 2025]
- Quantum Computer Company Xanadu Is Set to Go Public: Should Investors Buy the IPO? - Yahoo! Finance Canada - December 27th, 2025 [December 27th, 2025]