Quantum physics proposes a new way to study biologythe results could revolutionize our understanding of how life works – Phys.org
This article has been reviewed according to ScienceX's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:
fact-checked
trusted source
written by researcher(s)
proofread
Imagine using your cellphone to control the activity of your own cells to treat injuries and disease. It sounds like something from the imagination of an overly optimistic science fiction writer. But this may one day be a possibility through the emerging field of quantum biology.
Over the past few decades, scientists have made incredible progress in understanding and manipulating biological systems at increasingly small scales, from protein folding to genetic engineering. And yet, the extent to which quantum effects influence living systems remains barely understood.
Quantum effects are phenomena that occur between atoms and molecules that can't be explained by classical physics. It has been known for more than a century that the rules of classical mechanics, like Newton's laws of motion, break down at atomic scales. Instead, tiny objects behave according to a different set of laws known as quantum mechanics.
For humans, who can only perceive the macroscopic world, or what's visible to the naked eye, quantum mechanics can seem counterintuitive and somewhat magical. Things you might not expect happen in the quantum world, like electrons "tunneling" through tiny energy barriers and appearing on the other side unscathed, or being in two different places at the same time in a phenomenon called superposition. Quantum mechanics describes the properties of atoms and molecules.
I am trained as a quantum engineer. Research in quantum mechanics is usually geared toward technology. However, and somewhat surprisingly, there is increasing evidence that naturean engineer with billions of years of practicehas learned how to use quantum mechanics to function optimally. If this is indeed true, it means that our understanding of biology is radically incomplete. It also means that we could possibly control physiological processes by using the quantum properties of biological matter.
Researchers can manipulate quantum phenomena to build better technology. In fact, you already live in a quantum-powered world: from laser pointers to GPS, magnetic resonance imaging and the transistors in your computerall these technologies rely on quantum effects.
In general, quantum effects only manifest at very small length and mass scales, or when temperatures approach absolute zero. This is because quantum objects like atoms and molecules lose their "quantumness" when they uncontrollably interact with each other and their environment. In other words, a macroscopic collection of quantum objects is better described by the laws of classical mechanics. Everything that starts quantum dies classical. For example, an electron can be manipulated to be in two places at the same time, but it will end up in only one place after a short whileexactly what would be expected classically. Electrons can be in two places at the same time, but will end up in one location eventually.
In a complicated, noisy biological system, it is thus expected that most quantum effects will rapidly disappear, washed out in what the physicist Erwin Schrdinger called the "warm, wet environment of the cell." To most physicists, the fact that the living world operates at elevated temperatures and in complex environments implies that biology can be adequately and fully described by classical physics: no funky barrier crossing, no being in multiple locations simultaneously.
Chemists, however, have for a long time begged to differ. Research on basic chemical reactions at room temperature unambiguously shows that processes occurring within biomolecules like proteins and genetic material are the result of quantum effects. Importantly, such nanoscopic, short-lived quantum effects are consistent with driving some macroscopic physiological processes that biologists have measured in living cells and organisms. Research suggests that quantum effects influence biological functions, including regulating enzyme activity, sensing magnetic fields, cell metabolism and electron transport in biomolecules.
The tantalizing possibility that subtle quantum effects can tweak biological processes presents both an exciting frontier and a challenge to scientists. Studying quantum mechanical effects in biology requires tools that can measure the short time scales, small length scales and subtle differences in quantum states that give rise to physiological changesall integrated within a traditional wet lab environment. Birds use quantum effects in navigation.
In my work, I build instruments to study and control the quantum properties of small things like electrons. In the same way that electrons have mass and charge, they also have a quantum property called spin. Spin defines how the electrons interact with a magnetic field, in the same way that charge defines how electrons interact with an electric field. The quantum experiments I have been building since graduate school, and now in my own lab, aim to apply tailored magnetic fields to change the spins of particular electrons.
Research has demonstrated that many physiological processes are influenced by weak magnetic fields. These processes include stem cell development and maturation, cell proliferation rates, genetic material repair and countless others. These physiological responses to magnetic fields are consistent with chemical reactions that depend on the spin of particular electrons within molecules. Applying a weak magnetic field to change electron spins can thus effectively control a chemical reaction's final products, with important physiological consequences.
Currently, a lack of understanding of how such processes work at the nanoscale level prevents researchers from determining exactly what strength and frequency of magnetic fields cause specific chemical reactions in cells. Current cellphone, wearable and miniaturization technologies are already sufficient to produce tailored, weak magnetic fields that change physiology, both for good and for bad. The missing piece of the puzzle is, hence, a "deterministic codebook" of how to map quantum causes to physiological outcomes.
In the future, fine-tuning nature's quantum properties could enable researchers to develop therapeutic devices that are noninvasive, remotely controlled and accessible with a mobile phone. Electromagnetic treatments could potentially be used to prevent and treat disease, such as brain tumors, as well as in biomanufacturing, such as increasing lab-grown meat production.
Quantum biology is one of the most interdisciplinary fields to ever emerge. How do you build community and train scientists to work in this area?
Since the pandemic, my lab at the University of California, Los Angeles and the University of Surrey's Quantum Biology Doctoral Training Centre have organized Big Quantum Biology meetings to provide an informal weekly forum for researchers to meet and share their expertise in fields like mainstream quantum physics, biophysics, medicine, chemistry and biology.
Research with potentially transformative implications for biology, medicine and the physical sciences will require working within an equally transformative model of collaboration. Working in one unified lab would allow scientists from disciplines that take very different approaches to research to conduct experiments that meet the breadth of quantum biology from the quantum to the molecular, the cellular and the organismal.
The existence of quantum biology as a discipline implies that traditional understanding of life processes is incomplete. Further research will lead to new insights into the age-old question of what life is, how it can be controlled and how to learn with nature to build better quantum technologies.
The rest is here:
Quantum physics proposes a new way to study biologythe results could revolutionize our understanding of how life works - Phys.org
- JPMorgan Chase Just Injected a Shot of Adrenaline into Quantum Computing Stocks - Yahoo Finance - October 21st, 2025 [October 21st, 2025]
- The Supply Chain Chokepoints in Quantum - War on the Rocks - October 21st, 2025 [October 21st, 2025]
- Scientists Discovered a Way to Expand Your ConsciousnessThey Just Need to Plug in Your Brain First - Popular Mechanics - October 21st, 2025 [October 21st, 2025]
- Stock-Split Watch: Could IonQ Be the Next Quantum Computing Stock to Split? - The Motley Fool - October 21st, 2025 [October 21st, 2025]
- 5M Warrants: D-Wave Redeems Public Warrants at $0.01, Streamlining Capital Structure - Stock Titan - October 21st, 2025 [October 21st, 2025]
- Should You Buy This 1 Undiscovered Quantum Computing Stock In October 2025? - Barchart.com - October 21st, 2025 [October 21st, 2025]
- 3 Top Stocks to Buy to Benefit From the AI and Quantum Computing Revolution - The Motley Fool - October 21st, 2025 [October 21st, 2025]
- Is It Time to Sell Your Quantum Computing Stocks? Warren Buffett Has Some Great Advice for You - The Motley Fool - October 21st, 2025 [October 21st, 2025]
- Amazon Is Backing This Genius Quantum Computing Leader - The Motley Fool - October 21st, 2025 [October 21st, 2025]
- Classiq Partners with QUCAN to Deliver Hands-On Quantum Training Globally - GlobeNewswire - October 21st, 2025 [October 21st, 2025]
- IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing, Inc. Have Served Up an $875 Million Warning to Wall Street - The Motley Fool - October 21st, 2025 [October 21st, 2025]
- If You Invested $10,000 In Rigetti Computing 1 Year Ago, Here's How Much You'd Have Today - The Motley Fool - October 21st, 2025 [October 21st, 2025]
- Applications of Quantum-Based Technologies in Medicine, A Comprehensive Review - Countercurrents - October 21st, 2025 [October 21st, 2025]
- IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing, Inc. Have Served Up an $875 Million Warning to Wall Street - Nasdaq - October 21st, 2025 [October 21st, 2025]
- IONQ or RGTI: The Superior Quantum Computing Stock to Buy According to This Investor - TipRanks - October 21st, 2025 [October 21st, 2025]
- D-Wave to redeem all outstanding public warrants in November - Investing.com - October 21st, 2025 [October 21st, 2025]
- Quantum Gold Rush: D-Wave (QBTS) Stock Skyrockets on Quantum Breakthroughs & Hype Whats Next? - ts2.tech - October 21st, 2025 [October 21st, 2025]
- Nightmare calculation may be too tricky for even quantum computers - New Scientist - October 19th, 2025 [October 19th, 2025]
- Quantum computings top 3 cybersecurity threats, and why we cant ignore them - TNGlobal - October 19th, 2025 [October 19th, 2025]
- Quantum cryptography offers ability to protect from attackers looking to break encryption - IT Brew - October 19th, 2025 [October 19th, 2025]
- D-Wave Quantum gains as Swiss Quantum Technology agrees to deploy one of its computers for 10 million euros - Sherwood News - October 19th, 2025 [October 19th, 2025]
- D-Wave Quantum Marks Milestone With Further Push Into Europe - Barron's - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks for the Next 10 Years? - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- D-Wave Quantum (QBTS) Named Winner in Fast Company's 2025 Next Big Things in Tech Awards - NewMediaWire - October 17th, 2025 [October 17th, 2025]
- D-Wave stock rises again after it strikes a deal to bring its Advantage2 quantum computer to Italy - Fast Company - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks to Buy Right Now? - AOL.com - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks for the Next 10 Years? - The Motley Fool - October 17th, 2025 [October 17th, 2025]
- Great News for IonQ Stock, Rigetti Stock, and Quantum Computing Stock Investors - The Motley Fool - October 17th, 2025 [October 17th, 2025]
- Swiss Quantum Technology inks 10M partnership with Californias D-Wave to expand quantum computing access in Europe - Silicon Canals - October 17th, 2025 [October 17th, 2025]
- Study on quantum thermalization from thermal initial states in a superconducting quantum computer - Nature - October 17th, 2025 [October 17th, 2025]
- Cybersecurity gives UT San Antonio a head start in the Texas quantum race - UT San Antonio - October 17th, 2025 [October 17th, 2025]
- What Is One of the Best Quantum Computing Stocks to Buy Right Now? - TECHi - October 17th, 2025 [October 17th, 2025]
- How Quantum Computing Will Upend Cybersecurity - Boston Consulting Group - October 17th, 2025 [October 17th, 2025]
- Why Is Quantum Computing Inc. Stock Jumping Today? - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- 2 Top Stocks in Quantum Computing and Robotics That Could Soar in 2026 - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- Why D-Wave Quantum Stock Fell as Much as 11.5% on Thursday - AOL.com - October 17th, 2025 [October 17th, 2025]
- John Martinis and Michel Devoret win 2025 Nobel Prize in Physics - The Daily Nexus - October 17th, 2025 [October 17th, 2025]
- Biotechs bet on quantum shaping future of healthcare - - Global Venturing - October 17th, 2025 [October 17th, 2025]
- Can Rigetti's 264% Year-to-Date Rally Hold as Quantum Race Heats Up? - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- 2025-10 - How Africas quantum tech could rewrite the future - Wits University - October 17th, 2025 [October 17th, 2025]
- Is IonQ a Better Pick Than RGTI and QBTS Amid the 2025 Quantum Boom? - Yahoo Finance - October 17th, 2025 [October 17th, 2025]
- RGTX: Taking Advantage Of The Quantum Computing Momentum (NASDAQ:RGTX) - Seeking Alpha - October 17th, 2025 [October 17th, 2025]
- Oxford physicists achieve teleportation between two quantum supercomputers - The Brighter Side of News - October 15th, 2025 [October 15th, 2025]
- Isentroniq Raises 7.5M to Solve Wiring Bottleneck in Quantum Computers - EE Times Europe - October 15th, 2025 [October 15th, 2025]
- Financial, Other Industries Urged to Prepare for Quantum Computers - Dark Reading - October 15th, 2025 [October 15th, 2025]
- Beyond the Hype: 4 Monumental Risks to Quantum Computing Pure-Plays IonQ, Rigetti Computing, and D-Wave Quantum - The Motley Fool - October 15th, 2025 [October 15th, 2025]
- Classiq Awarded Fast Company's 2025 Next Big Things in Tech - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- D-Wave Named Winner in Fast Companys 2025 Next Big Things in Tech Awards - Yahoo Finance - October 15th, 2025 [October 15th, 2025]
- Qilimanjaro and QURECA Partner to Strengthen Quantum Education and Workforce Development - The Quantum Insider - October 15th, 2025 [October 15th, 2025]
- AI and quantum computing are converging. Both could get a boost - Yahoo! Tech - October 15th, 2025 [October 15th, 2025]
- Why D-Wave Quantum Stock Zoomed 6% Skyward on Tuesday - The Motley Fool - October 15th, 2025 [October 15th, 2025]
- Qilimanjaro and QURECA Partner to Strengthen Quantum Education and Workforce Development - HPCwire - October 15th, 2025 [October 15th, 2025]
- This 250-year-old equation just got a quantum makeover - ScienceDaily - October 15th, 2025 [October 15th, 2025]
- The 5 next big things in computing, chips, and foundational technology for 2025 - Fast Company - October 15th, 2025 [October 15th, 2025]
- IBM inaugurates powerful computer that puts Spain in the race for quantum utility - EL PAS English - October 15th, 2025 [October 15th, 2025]
- 2 Pure-Play Quantum Computing Stocks That Can Plunge Up to 62%, According to Select Wall Street Analysts - The Motley Fool - October 13th, 2025 [October 13th, 2025]
- Are we ready for Quantum AI and Australias next cyber war? - The Australian - October 13th, 2025 [October 13th, 2025]
- Infleqtion And Silicon Light Machines Partner To Boost Quantum Computer Performance - Quantum Zeitgeist - October 13th, 2025 [October 13th, 2025]
- Rigetti, IonQ, and Other Quantum Stocks Might Be in a Bubble - Barron's - October 11th, 2025 [October 11th, 2025]
- From artificial atoms to quantum information machines: Inside the 2025 Nobel Prize in physics - The Conversation - October 11th, 2025 [October 11th, 2025]
- Quantum Brilliances Quoll Earns TIME Recognition as One of the Best Inventions of 2025 - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- Researchers Propose Realizing (mostly) Quantum-autonomous Gates on Three Platforms, Reducing Reliance on Time-dependent Control - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- The Next Big Theme: Positioning For Early Growth In Quantum Computing - Seeking Alpha - October 11th, 2025 [October 11th, 2025]
- If You Own Quantum Computing Stocks IonQ, Rigetti, or D-Wave, the Time to Be Fearful When Others Are Greedy Has Arrived - Nasdaq - October 11th, 2025 [October 11th, 2025]
- Quantum LDPC Codes Achieve Single-Shot Universality Via Code-Switching for Fault-Tolerant Computation - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Quantum Advantage from Sampling Shallow Circuits Achieves Distance of from Classical Simulations - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Quantum breakthrough in digital security: How Indian researchers achieved this, significance - The Indian Express - October 11th, 2025 [October 11th, 2025]
- Quantum memory may be closer to reality thanks to this new router - Earth.com - October 11th, 2025 [October 11th, 2025]
- IQC faculty secure more than $1 million in federal funding - University of Waterloo - October 11th, 2025 [October 11th, 2025]
- Infleqtion and Silicon Light Machines Partner to Boost Quantum Computer Performance - Yahoo Finance - October 11th, 2025 [October 11th, 2025]
- Infleqtion and Silicon Light Machines Partner to Boost Quantum Computer Performance - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- Quantum Computer Security: Protecting Systems from Attacks in the Age of Cloud-Based Processors - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Michel Devoret, 2025 Physics Nobel laureate: 'I thought it was a prank. The quantum computer is not here yet' - Le Monde.fr - October 11th, 2025 [October 11th, 2025]
- Fields medalist: As of today we have no quantum computer. It does not exist. - Network World - October 9th, 2025 [October 9th, 2025]
- 3 Quantum Computing Stocks That Could Make a Millionaire - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Discoveries behind quantum computers win the Nobel Prize in physics - Science News Explores - October 9th, 2025 [October 9th, 2025]
- Discoveries that enabled quantum computers win the Nobel Prize in physics - Science News - October 9th, 2025 [October 9th, 2025]
- Library exhibit marks 100 years since quantum theory revolution - northernstar.info - October 9th, 2025 [October 9th, 2025]
- Harvard team builds quantum computer that runs continuously for over two hours - Digital Watch Observatory - October 9th, 2025 [October 9th, 2025]
- Trio win Nobel prize for revealing quantum physics in action - Reuters - October 9th, 2025 [October 9th, 2025]