Quantum error correction used to actually correct errors – Ars Technica
Enlarge / Quantinuum's H2 "racetrack" quantum processor.
Quantinuum
Today's quantum computing hardware is severely limited in what it can do by errors that are difficult to avoid. There can be problems with everything from setting the initial state of a qubit to reading its output, and qubits will occasionally lose their state while doing nothing. Some of the quantum processors in existence today can't use all of their individual qubits for a single calculation without errors becoming inevitable.
The solution is to combine multiple hardware qubits to form what's termed a logical qubit. This allows a single bit of quantum information to be distributed among multiple hardware qubits, reducing the impact of individual errors. Additional qubits can be used as sensors to detect errors and allow interventions to correct them. Recently, there have been a number of demonstrations that logical qubits work in principle.
On Wednesday, Microsoft and Quantinuum announced that logical qubits work in more than principle. "We've been able to demonstrate what's called active syndrome extraction, or sometimes it's also called repeated error correction," Microsoft's Krysta Svoretold Ars. "And we've been able to do this such that it is better than the underlying physical error rate. So it actually works."
Microsoft has its own quantum computing efforts, and it also acts as a service provider for other companies' hardware. Its Azure Quantum service allows users to write instructions for quantum computers in a hardware-agnostic manner and then run them on the offerings of four different companies, many of them based on radically different hardware qubits. This work, however, was done on one specific hardware platform: a trapped-ion computer from a company called Quantinuum.
We covered the technology behind Quantinuum's computers when the company was an internal project at industrial giant Honeywell. Briefly, trapped ion qubits benefit from a consistent behavior (there's no device-to-device variation in atoms), ease of control, and relative stability. Because the ions can be moved around easily, it's possible to entangle any qubit with any other in the hardware and to perform measurements on them while calculations are in progress. "These are some of the key capabilities: the two-qubit gate fidelities, the fact that you can move and have all the connectivity through movement, and then mid-circuit measurement," Svore told Ars.
Quantinuum's hardware does lag in one dimension: the total number of qubits. While some of its competitors have pushed over 1,000 qubits, Quantinuum's latest hardware is limited to 32 qubits.
That said, a low error rate is valuable for this work. Logical qubits work by combining multiple hardware qubits. If each of those qubits has a high enough error rate, combining them increases the probability that errors will crop up more quickly than they can be corrected. So the error rate has to be below a critical point for error correction to work. And existing qubit technologies seem to be at that pointalbeit barely. Initial work in this area had either barely detected the impact of error correction or had simply registered the errors but not corrected them.
As the draft of a new manuscript describing this work puts it, "To the best our knowledge, none of these experiments have demonstrated logical error rates better than the physical error rates."
Microsoft is also well-positioned to be doing this work. Its role requires it to translate generic quantum code into the commands needed to be performed on Quantinuum's hardwareincluding acting as a compiler provider. And in at least part of this work, it used this knowledge to specifically optimize the code to cut down on the time spent moving ions around.
The work involved three experiments. In the first, the researchers formed a logical qubit with seven information-holding hardware qubits and three ancillary qubits for error detection and correction. The 32 qubits in the hardware allowed two of these to be created; they were then entangled, which required two gate operations. Errors were checked for during the initialization of the qubits and after the entanglement. These operations were performed thousands of times to derive error rates.
On individual hardware qubits, the error rate was 0.50 percent. When error correction was included, this rate dropped to 0.05 percent. But the system could do even better if it identified readings that indicated difficult-to-interpret error states and discarded those calculations. Doing the discarding dropped the error rate to 0.001 percent. These instances were rare enough that the team didn't have to throw out a significant number of operations, but they still made a huge difference in the error rate.
Next, the team switched to what they call a "Carbon code," which requires 30 physical qubits (24 data and six correction/detection), meaning the hardware could only host one. But the code was also optimized for the hardware. "Knowing the two-qubit gate fidelities, knowing how many interaction zones, how much parallelism you can have, we then optimize our error-correction codes for that," Svore said.
The Carbon code also allows the identification of errors that are difficult to correct properly, allowing those results to be discarded. With error correction and discarding of difficult-to-fix errors, the error rate dropped from 0.8 percent to 0.001 percenta factor of 800 difference.
Finally, the researchers performed repeated rounds of gate operations followed by error detection and correction on a logical qubit using the Carbon code. These again showed a major improvement thanks to error correction (about an order of magnitude) after one round. By the second round, however, error correction had only cut the error rate in half, and any effect was statistically insignificant by round three.
So while the results tell us that error correction works, they also indicate that our current hardware isn't yet sufficient to allow for the extended operations that useful calculations will require. Still, Svore said, "I think this marks a critical milestone on the path to more elaborate computations that are fault tolerant and reliable" and emphasized that it was done on production commercial hardware rather than a one-of-a-kind academic machine.
Read this article:
Quantum error correction used to actually correct errors - Ars Technica
- The race to perfect the quantum computer is on, and UC is helping America hold its lead - University of California - May 15th, 2025 [May 15th, 2025]
- Keysight Quantum Control System Embedded within Fujitsu and RIKENs World-Leading 256-Qubit Quantum Computer - Morningstar - May 15th, 2025 [May 15th, 2025]
- Keysight Technologies, Inc. Quantum Control System Embedded Within Fujitsu and Riken's 256-Qubit Quantum Computer - marketscreener.com - May 15th, 2025 [May 15th, 2025]
- The Worlds First Song Created by Artificial Intelligence Using a Quantum Computer Is HereIt Sounds Nothing Like What You Expect - The Daily Galaxy - May 11th, 2025 [May 11th, 2025]
- Regulation watch: how governments are dealing with the risks of quantum computing - Strategic Risk Global - May 11th, 2025 [May 11th, 2025]
- The age of the hype cycle: why science needs room to breathe - varsity.co.uk - May 11th, 2025 [May 11th, 2025]
- Quantums Double-Edged Sword: Balancing Risk and Readiness - InformationWeek - May 11th, 2025 [May 11th, 2025]
- The Computational Limit of Life May Be Much Higher Than We Thought - Yahoo - May 11th, 2025 [May 11th, 2025]
- BlackRock beefs up quantum compute threat warnings to Bitcoin investors - dlnews.com - May 11th, 2025 [May 11th, 2025]
- From false alarms to real threats: Protecting cryptography against quantum - cio.com - May 11th, 2025 [May 11th, 2025]
- Boosting quantum error correction using AI - Phys.org - May 11th, 2025 [May 11th, 2025]
- Laws governing finance and investment can help to protect society from dangers of quantum computing, study shows - Phys.org - May 11th, 2025 [May 11th, 2025]
- Quantum computing stocks jump after strong results from D-Wave Quantum (QBTS:NYSE) - Seeking Alpha - May 11th, 2025 [May 11th, 2025]
- Listen to the worlds first song made by a quantum computer and AI - The Next Web - May 10th, 2025 [May 10th, 2025]
- Preparing for post-quantum computing will be more difficult than the millennium bug - Computer Weekly - May 10th, 2025 [May 10th, 2025]
- First-ever silicon-based quantum computer brings scalable quantum power to the masses - The Brighter Side of News - May 10th, 2025 [May 10th, 2025]
- Quantum computer defeats a supercomputer in a very crucial task for the first time - Earth.com - May 10th, 2025 [May 10th, 2025]
- Why the world is now in a race to achieve Quantum Superiority - New York Post - May 5th, 2025 [May 5th, 2025]
- 2 Quantum Computing Stocks to Buy Right Now - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- IBM, Tata Consultancy Services and Government of Andhra Pradesh Unveil Plans to Deploy Indias Largest Quantum Computer in the Countrys First Quantum... - May 5th, 2025 [May 5th, 2025]
- 95% of Organizations Have No Quantum Computing Roadmap - Security Magazine - May 5th, 2025 [May 5th, 2025]
- Prediction: 3 Quantum Computing Stocks That Will Be Worth More Than IonQ 10 Years From Now - Yahoo Finance - May 5th, 2025 [May 5th, 2025]
- R&D Technical Section Q&A: Quantum ComputingAre We Ready? - Society of Petroleum Engineers (SPE) - May 5th, 2025 [May 5th, 2025]
- Tennessee Set to Become First US Quantum Computing, Networking Hub - IoT World Today - May 5th, 2025 [May 5th, 2025]
- 'Qubits For Peace': Researchers Warn Quantum Technology Is Deepening The Global Divide - The Quantum Insider - May 5th, 2025 [May 5th, 2025]
- Down 45%, Should You Buy the Dip on IonQ? - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- Prediction: 3 Quantum Computing Stocks That Will Be Worth More Than IonQ 10 Years From Now - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- Xanadu forges partnerships with US military, industry to fuel quantum computing ambitions - BetaKit - May 5th, 2025 [May 5th, 2025]
- Is IonQ the Best Quantum Computing Stock to Buy Right Now? - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- IBM, TCS team up for Indias most advanced quantum hub - The Economic Times - May 5th, 2025 [May 5th, 2025]
- Quantum-Safe Cryptography: The Time to Start Is Now - GovTech - May 5th, 2025 [May 5th, 2025]
- SA Asks: What are the best quantum computing stocks? (GOOG:NASDAQ) - Seeking Alpha - May 5th, 2025 [May 5th, 2025]
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]