Quantum computing: The five biggest breakthroughs – Engineers Ireland
Quantum computing is a revolutionary technology already making waves in many industries, such as drug discovery, cryptography, finance, and logistics. It works by exploiting quantum mechanical phenomena to perform complex computations in a fraction of the time classical computers require. Two main quantum mechanical phenomena drive quantum computers' speed and computational prowess superposition and entanglement.
Unlike classical computers, which operate on binary bits (0 and 1), quantum computers operate on quantum bits or qubits. Qubits can exist in a state of superposition. This means that any qubit has some probability of existing simultaneously in the 0 and 1 states, exponentially increasing the computational power of quantum computers.
Another unique property that qubits have is their ability to become entangled. This means that two qubits, no matter how physically far, are correlated so that knowing the state of one particle automatically tells us something about its companion, even when they are far apart. This correlation can be harnessed for processing vast amounts of data and solving complex problems that classical computers cannot.
Classical computers only have the power to simulate phenomena based on classical physics, making it more difficult or slower to solve problems that rely on quantum phenomena. This is where the true importance of quantum computers lies.
Since quantum computers are based on qubits, they can solve challenging problems using classical computers and revolutionise many industries. For example, quantum computers can rapidly simulate molecules and chemical reactions, discovering new drugs and materials with exceptional properties.
Although significant breakthroughs have been made in quantum computing, we are still in the nascent stages of its development.
The objective of quantum supremacy is to demonstrate that a quantum computer can solve a problem that no classical computer can solve in any reasonable length of time, despite the usefulness of the problem. Achieving this goal demonstrates the power of a quantum computer over a classical computer in complex problem-solving.
InOctober 2019, Google confirmedthat it had achieved quantum supremacy using its fully programmable 54-qubit processor called Sycamore. They solved a sampling problem in 200 seconds which would take a supercomputer nearly 10,000 years to solve. This marked a significant achievement in the development of quantum computing.
Richard Feynman first theorised the idea of using quantum mechanics to perform calculations impossible for classical computers. Image:Unknown/Wikimedia Commons
Since then, many researchers have demonstrated quantum supremacy by solving various sampling problems. The impact of achieving quantum supremacy cannot be overstated. It validates the potential of quantum computing to solve problems beyond the capabilities of classical computers, as first theorised by Richard Feynman in the 1980s.
Apart from sampling problems, other applications have been proposed for demonstrating quantum supremacy, such as Shor's algorithm for factoring integers which are extremely important in encryption. However, implementing Shor's algorithm for large numbers is not feasible with existing technology and is hence not the preferred oversampling algorithm for demonstrating supremacy.
The most pressing concern with quantum computers is their sensitivity to errors induced by environmental noise and imperfect control. This hinders their practical usability, as data stored on a quantum computer can become corrupted.
Classical error correction relies on redundancy, ie, repetition. However, quantum information cannot be cloned or copied due to the no-cloning theorem (which states thatit is impossible to create an independent and identical copy of an arbitrary unknownquantum state). Therefore, a new error correction method is required for quantum computing systems.
QEC for a single qubit. Image:Self/Wikimedia Commons
Quantum error correction (QEC) is a way to mitigate these errors and ensure that the data stored on a quantum computer is error-free, thus improving the reliability and accuracy of quantum computers.
The principle of QEC is to encode the data stored on a quantum computer such that the errors can be detected and corrected without disrupting the computation being performed on it.
This is done using quantum error-correction codes (QECCs). QECCs work by encoding the information onto a larger state space. They further correct the error without measuring the quantum state, thereby preventing the collapse of the quantum state.
The first experimental demonstration of QEC was done in 1998with nuclear magnetic resonance qubits. Since then, several experiments to demonstrate QEC have been performed using, for example, linear optics and trapped ions, among others.
A significant breakthrough camein 2016 when researchers extended the lifespan of a quantum bit using QEC. Their research showed the advantage of using hardware-efficient qubit encoding over traditional QEC methods for improving the lifetime of a qubit.
The detection and elimination of errors is critical to developing realistic quantum computers. QEC handles errors in the stored quantum information, but what about the errors after performing operations? Is there a way to correct those errors and ensure that the computations are not useless?
Fault-tolerant quantum computing is a method to ensure that these errors are detected and corrected using a combination of QECCs and fault-tolerant gates. This ensures that errors arising during the computations don't accumulate and render them worthless.
Quantum computing features. Image:Akash Sain/iStock
The biggest challenge in achieving fault-tolerant quantum computing is the need for many qubits. QECCs themselves require a lot of qubits to detect and correct errors.
Additionally, fault-tolerant gates also require a large number of qubits. However, two independent theoretical studies published in1998and2008proved that fault-tolerant quantum computers can be built. This has come to be known as the threshold theorem, which states that if the physical error rates of a quantum computer are below a certain threshold, the logical error rate can be suppressed to arbitrarily low values.
No experimental findings have proven fault-tolerant quantum computing due to the high number of qubits needed. The closest we've come to an experimental realisation is a2022 study published in Nature,demonstrating fault-tolerant universal quantum gate operations.
We have seen teleportation one too many times in science fiction movies and TV shows. But are any researchers close to making it a reality? Well, yes and no. Quantum teleportation allows for transferring one quantum state from one physical location to another without physically moving the quantum state itself. It has a wide range of applications, from secure quantum communication to distributed quantum computing.
Quantum teleportation wasfirst investigated in 1993by scientists who were using it as a way to send and receive quantum information. It was experimentally realised only four years later, in 1997, by two independent research groups. The basic principle behind quantum teleportation is entanglement (when two particles remain connected even when separated by vast distances).
Since 1997, many research groups have demonstrated the quantum teleportation of photons, atoms, and other quantum particles. It is the only real form of teleportation that exists.
In fact, the 2022 Nobel Prize in Physics was awarded to three scientists Alain Aspect, John Clauser, and Anton Zeilinger for experiments with entangled photons. The work demonstrated that teleportation between photons was possible. Their work demonstrated quantum entanglement and showed it could be used to teleport quantum information from one photon to another.
Quantum teleportation is the cornerstone for building a quantum internet. This is because it enables the distribution of entanglement over long distances.
Another important application of quantum teleportation is enabling remote quantum operations, meaning that a quantum computation can be performed on a distant processor without transmitting the qubits. This could be useful for secure communication and for performing quantum computations in inaccessible or hostile environments.
Topology is a branch of mathematics concerned with studying the properties of shapes and spaces preserved when deformed. But what does it have to do with quantum computing?
In essence, topological quantum computing is a theoretical model that uses quasiparticles called anyons (quasiparticles in two-dimensional space) for encoding and manipulating qubits.
The method is founded on the topological properties of matter, and in the case of anyons, the world lines (the path that an object traces in four-dimensional spacetime) of these particles form braids. These braids then make up the logic gates which are the building blocks of computers.
No experimental studies demonstrate topological quantum computing. Image:FMNLab/Wikimedia Commons
Topological qubits are protected against local perturbations and can be manipulated with high precision, making them less susceptible to decoherence. Additionally, topological quantum computing is more resistant to errors due to its inherent redundancy and topological protection, making it a promising candidate for fault-tolerant quantum computing.
Most topological quantum computing research is theoretical; currently, no studies provide substantial experimental support for the same. But, developments in this area of research are vital for building practical and scalable quantum computers.
With a mix of theoretical and experimental demonstrations, quantum computing is still in the early stages of research and development. These developments can potentially revolutionise several industries and academic disciplines, including financial services, materials science, cryptography, and artificial intelligence.
Even if there is still more study, the implications for quantum computing's future are promising. We may anticipate further developments and innovations in the years to come.
Continued here:
Quantum computing: The five biggest breakthroughs - Engineers Ireland
- Oxford physicists achieve teleportation between two quantum supercomputers - The Brighter Side of News - October 15th, 2025 [October 15th, 2025]
- Isentroniq Raises 7.5M to Solve Wiring Bottleneck in Quantum Computers - EE Times Europe - October 15th, 2025 [October 15th, 2025]
- Financial, Other Industries Urged to Prepare for Quantum Computers - Dark Reading - October 15th, 2025 [October 15th, 2025]
- Beyond the Hype: 4 Monumental Risks to Quantum Computing Pure-Plays IonQ, Rigetti Computing, and D-Wave Quantum - The Motley Fool - October 15th, 2025 [October 15th, 2025]
- Classiq Awarded Fast Company's 2025 Next Big Things in Tech - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- D-Wave Named Winner in Fast Companys 2025 Next Big Things in Tech Awards - Yahoo Finance - October 15th, 2025 [October 15th, 2025]
- Qilimanjaro and QURECA Partner to Strengthen Quantum Education and Workforce Development - The Quantum Insider - October 15th, 2025 [October 15th, 2025]
- AI and quantum computing are converging. Both could get a boost - Yahoo! Tech - October 15th, 2025 [October 15th, 2025]
- Why D-Wave Quantum Stock Zoomed 6% Skyward on Tuesday - The Motley Fool - October 15th, 2025 [October 15th, 2025]
- Qilimanjaro and QURECA Partner to Strengthen Quantum Education and Workforce Development - HPCwire - October 15th, 2025 [October 15th, 2025]
- This 250-year-old equation just got a quantum makeover - ScienceDaily - October 15th, 2025 [October 15th, 2025]
- The 5 next big things in computing, chips, and foundational technology for 2025 - Fast Company - October 15th, 2025 [October 15th, 2025]
- IBM inaugurates powerful computer that puts Spain in the race for quantum utility - EL PAS English - October 15th, 2025 [October 15th, 2025]
- 2 Pure-Play Quantum Computing Stocks That Can Plunge Up to 62%, According to Select Wall Street Analysts - The Motley Fool - October 13th, 2025 [October 13th, 2025]
- Are we ready for Quantum AI and Australias next cyber war? - The Australian - October 13th, 2025 [October 13th, 2025]
- Infleqtion And Silicon Light Machines Partner To Boost Quantum Computer Performance - Quantum Zeitgeist - October 13th, 2025 [October 13th, 2025]
- Rigetti, IonQ, and Other Quantum Stocks Might Be in a Bubble - Barron's - October 11th, 2025 [October 11th, 2025]
- From artificial atoms to quantum information machines: Inside the 2025 Nobel Prize in physics - The Conversation - October 11th, 2025 [October 11th, 2025]
- Quantum Brilliances Quoll Earns TIME Recognition as One of the Best Inventions of 2025 - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- Researchers Propose Realizing (mostly) Quantum-autonomous Gates on Three Platforms, Reducing Reliance on Time-dependent Control - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- The Next Big Theme: Positioning For Early Growth In Quantum Computing - Seeking Alpha - October 11th, 2025 [October 11th, 2025]
- If You Own Quantum Computing Stocks IonQ, Rigetti, or D-Wave, the Time to Be Fearful When Others Are Greedy Has Arrived - Nasdaq - October 11th, 2025 [October 11th, 2025]
- Quantum LDPC Codes Achieve Single-Shot Universality Via Code-Switching for Fault-Tolerant Computation - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Quantum Advantage from Sampling Shallow Circuits Achieves Distance of from Classical Simulations - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Quantum breakthrough in digital security: How Indian researchers achieved this, significance - The Indian Express - October 11th, 2025 [October 11th, 2025]
- Quantum memory may be closer to reality thanks to this new router - Earth.com - October 11th, 2025 [October 11th, 2025]
- IQC faculty secure more than $1 million in federal funding - University of Waterloo - October 11th, 2025 [October 11th, 2025]
- Infleqtion and Silicon Light Machines Partner to Boost Quantum Computer Performance - Yahoo Finance - October 11th, 2025 [October 11th, 2025]
- Infleqtion and Silicon Light Machines Partner to Boost Quantum Computer Performance - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- Quantum Computer Security: Protecting Systems from Attacks in the Age of Cloud-Based Processors - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Michel Devoret, 2025 Physics Nobel laureate: 'I thought it was a prank. The quantum computer is not here yet' - Le Monde.fr - October 11th, 2025 [October 11th, 2025]
- Fields medalist: As of today we have no quantum computer. It does not exist. - Network World - October 9th, 2025 [October 9th, 2025]
- 3 Quantum Computing Stocks That Could Make a Millionaire - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Discoveries behind quantum computers win the Nobel Prize in physics - Science News Explores - October 9th, 2025 [October 9th, 2025]
- Discoveries that enabled quantum computers win the Nobel Prize in physics - Science News - October 9th, 2025 [October 9th, 2025]
- Library exhibit marks 100 years since quantum theory revolution - northernstar.info - October 9th, 2025 [October 9th, 2025]
- Harvard team builds quantum computer that runs continuously for over two hours - Digital Watch Observatory - October 9th, 2025 [October 9th, 2025]
- Trio win Nobel prize for revealing quantum physics in action - Reuters - October 9th, 2025 [October 9th, 2025]
- Advances in quantum error correction showcased at Q2B25 - Physics World - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in physics awarded to 3 University of California faculty - University of California - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in Physics goes to early research that led to todays quantum computers - The Verge - October 9th, 2025 [October 9th, 2025]
- Nobel in physics awarded to scientists showing quantum mechanics on macro scale - The Washington Post - October 9th, 2025 [October 9th, 2025]
- 3 scientists at US universities win Nobel Prize in physics for advancing quantum technology - ABC7 Los Angeles - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in physics goes to three scientists who discovered bizarre quantum effect on large scales - Live Science - October 9th, 2025 [October 9th, 2025]
- Trio who made foundational quantum computing discovery bag Nobel physics prize - theregister.com - October 9th, 2025 [October 9th, 2025]
- Clarke, Devoret, and Martinis Awarded Nobel Prize in Physics for Macroscopic Quantum Discoveries - Quantum Computing Report - October 9th, 2025 [October 9th, 2025]
- Macroscopic quantum tunneling wins 2025s Nobel Prize in physics - Big Think - October 9th, 2025 [October 9th, 2025]
- The time to invest in quantum is now - PwC - October 7th, 2025 [October 7th, 2025]
- Nokia bets on sovereign quantum-safe connectivity - Light Reading - October 7th, 2025 [October 7th, 2025]
- ChattState and UTC Partner With Chattanooga Quantum Collaborative on $1.33M NSF Grant to Protect the Nations Power Grid + Build Quantum Workforce... - October 7th, 2025 [October 7th, 2025]
- Rigetti Computing: I Caught The Falling Knife, And My Hand Never Felt Better! (RGTI) - Seeking Alpha - October 7th, 2025 [October 7th, 2025]
- Quantum Computing Inc. Announces $750 Million Oversubscribed Private Placement of Common Stock Priced at the Market Under Nasdaq Rules - The Quantum... - October 7th, 2025 [October 7th, 2025]
- Investing in Quantum Computing: How IONQ, QUBT, RGTI & QBTS Stocks Are Revolutionizing Technology and Climate Solutions - CarbonCredits.com - October 7th, 2025 [October 7th, 2025]
- Quantum City to Host Annual Summit to Tackle Tech Adoption in a Changing World - The Quantum Insider - October 7th, 2025 [October 7th, 2025]
- D-Wave Quantum (QBTS) Soars to New High on Real-World Quantum Computer Significance - MSN - October 7th, 2025 [October 7th, 2025]
- Rigettis $13 Billion Quantum Leap Stock Hits Record High on Big Deals, But Is the Hype Real? - ts2.tech - October 7th, 2025 [October 7th, 2025]
- Invest in quantum adoption now to be a winner in the quantum revolution - Data Center Dynamics - October 7th, 2025 [October 7th, 2025]
- Quantum Stocks Are Surging: Time to Load Up on D-Wave, or Is IonQ the Safer Bet? - 24/7 Wall St. - October 7th, 2025 [October 7th, 2025]
- Quantum Leap or Speculative Bubble? Wall Street Bets Big on the Future of Computing - FinancialContent - October 7th, 2025 [October 7th, 2025]
- Quantum and Semiconductor Stocks: Future Investment Opportunities - - October 7th, 2025 [October 7th, 2025]
- Were scaling quantum computing even faster with Atlantic Quantum. - The Keyword - October 4th, 2025 [October 4th, 2025]
- Investing in These 3 Quantum Computing Stocks Could Be a Once-in-a-Lifetime Opportunity - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- Quantum Computing Stock Could Rise 67%, Says Analyst. Heres Why. - Barron's - October 4th, 2025 [October 4th, 2025]
- Harvard researchers hail quantum computing breakthrough with machine that can run for two hours atomic loss quashed by experimental design, systems... - October 4th, 2025 [October 4th, 2025]
- Groundbreaking of Illinois Quantum and Microelectronics Park creates anchor for quantum innovation - University of Chicago News - October 4th, 2025 [October 4th, 2025]
- IonQ Hit Major Quantum Computer Milestone Earlier Than ExpectedTime to Buy? - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- Is quantum computing poised for another breakthrough? - IT Brew - October 4th, 2025 [October 4th, 2025]
- Rigetti Computing (RGTI): Can This Top Quantum Computing Stock 3X in 3 Years? - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- Investing in These 3 Quantum Computing Stocks Could Be a Once-in-a-Lifetime Opportunity - The Motley Fool - October 4th, 2025 [October 4th, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 10/3/2025 - TipRanks - October 4th, 2025 [October 4th, 2025]
- Billionaires Are Piling Into a Quantum Computing Stock That Gained Over 3,700% in the Past Year - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- Rigetti Computing (RGTI): Can This Top Quantum Computing Stock 3X in 3 Years? - AOL.com - October 4th, 2025 [October 4th, 2025]
- Rigetti, D-Wave, and other quantum computing stocks are leaping again: How high will they go? - Fast Company - October 4th, 2025 [October 4th, 2025]
- Quantum computing is having a moment in the stock market - MSN - October 4th, 2025 [October 4th, 2025]
- Quantum Computing Stocks: The Next Big Move for D-Wave, IonQ, and Rigetti - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- The Question One Should Always Ask When They Hear a Quantum Advantage Claim - Quantum Computing Report - October 4th, 2025 [October 4th, 2025]
- IBM: Navigating the Hybrid Cloud, AI, and Quantum Frontier (October 2025) - FinancialContent - October 4th, 2025 [October 4th, 2025]
- Quantum Computing (QUBT) Is Down 11.4% After Oversubscribed Funding and New Photonic Tech Debut Whats Changed - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- DARPA Selects PsiQuantum To Advance To Final Phase Of Quantum Computing Program - Quantum Zeitgeist - October 4th, 2025 [October 4th, 2025]
- 5 Nobel-worthy scientific advances that havent won the prize - Local 3 News - October 4th, 2025 [October 4th, 2025]