Quantum Computing in the NISQ era and beyond Quantum
Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away - we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.
[1] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41, 303-332 (1999), 10.1137/S0036144598347011. https://doi.org/10.1137/S0036144598347011
[2] A. P. Lund, M. J. Bremner, and T. C. Ralph, Quantum sampling problems, BosonSampling, and quantum supremacy, npj Quantum Information 3: 15 (2017), arXiv:1702.03061, 10.1038/s41534-017-0018-2. https://doi.org/10.1038/s41534-017-0018-2 arXiv:1702.03061
[3] A. W. Harrow and A. Montanaro, Quantum computational supremacy, Nature 549, 203-209 (2017), 10.1038/nature23458. https://doi.org/10.1038/nature23458
[4] S. P. Jordan, Quantum algorithm zoo, http://math.nist.gov/quantum/zoo/. http://math.nist.gov/quantum/zoo/
[5] A. Montanaro, Quantum algorithms: an overview, npj Quantum Information, 15023 (2016), arXiv:1511.04206, 10.1038/npjqi.2015.23. https://doi.org/10.1038/npjqi.2015.23 arXiv:1511.04206
[6] L. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79, 325 (1997), arXiv:quant-ph/9706033, 10.1103/PhysRevLett.79.325. https://doi.org/10.1103/PhysRevLett.79.325 arXiv:quant-ph/9706033
[7] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM J. Comput. 26, 1510-1523 (1997), arXiv:quant-ph/9701001, 10.1137/S0097539796300933. https://doi.org/10.1137/S0097539796300933 arXiv:quant-ph/9701001
[8] R. B. Laughlin and D. Pines, The theory of everything, PNAS 97, 28-31 (2000), 10.1073/pnas.97.1.28. https://doi.org/10.1073/pnas.97.1.28
[9] R. P. Feynman, Simulating physics with computers, Int. J. Theor. Physics 21, 467-488 (1982).
[10] D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, Proceedings of Symposia in Applied Matthematics 68 (2010), arXiv:0904.2557. arXiv:0904.2557
[11] S. Boixo, S. V. Isakov, V. N. Smelyansky, R. Babbush, N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, Characterizing quantum supremacy in near-term devices, Nature Physics 14, 595-600 (2018), arXiv:1608.00263 (2016), 10.1038/s41567-018-0124-x. https://doi.org/10.1038/s41567-018-0124-x arXiv:1608.00263
[12] S. Aaronson and L. Chen, Complexity-theoretic foundations of quantum supremacy experiments, arXiv:1612.05903 (2017). arXiv:1612.05903
[13] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. Solomonik, and R. Wisnieff, Breaking the 49-qubit barrier in the simulation of quantum circuits, arXiv:1710.05867 (2017). arXiv:1710.05867
[14] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits, Phys. Rev. Lett. 117, 060504 (2016), arXiv:1512.04600, 10.1103/PhysRevLett.117.060504. https://doi.org/10.1103/PhysRevLett.117.060504 arXiv:1512.04600
[15] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance, Nature 508, 500-503 (2014), arXiv:1402.4848, 10.1038/nature13171. https://doi.org/10.1038/nature13171 arXiv:1402.4848
[16] D. J. Bernstein, J. Buchmann, E. Dahmen, editors, Post-Quantum Cryptography, Springer (2009), 10.1007/978-3-540-88702-7. https://doi.org/10.1007/978-3-540-88702-7
[17] R. Allaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Lnger, N. Ltkenhaus, C. Monyk, P. Painchault, M. Peev, A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail, A. Shields, H. Weinfurter, and A. Zeilinger, Using quantum key distribution for cryptographic purposes: a survey, Theoretical Computer Science 560, 62-81 (2014), arXiv:quant-ph/0701168, 10.1016/j.tcs.2014.09.018. https://doi.org/10.1016/j.tcs.2014.09.018 arXiv:quant-ph/0701168
[18] S. Muralidharan, L. Li, J. Kim, N Ltkenhaus, M. D. Lukin, and L. Jiang, Efficient long distance quantum communication, Scientific Reports 6, 20463 (2016), arXiv:1509.08435, 10.1038/srep20463. https://doi.org/10.1038/srep20463 arXiv:1509.08435
[19] P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y.-K. Liu, B. Christensen, S. W. Nam, M. J. Stevens, and L. K. Shalm, Experimentally generated randomness certified by the impossibility of superluminal signals, Nature 556, 223-226 (2018), arXiv:1803.06219, 10.1038/s41586-018-0019-0. https://doi.org/10.1038/s41586-018-0019-0 arXiv:1803.06219
[20] Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick, Certifiable randomness from a single quantum device, arXiv:1804.00640 (2018). arXiv:1804.00640
[21] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017), arXiv:1611.04691, 10.1103/RevModPhys.89.035002. https://doi.org/10.1103/RevModPhys.89.035002 arXiv:1611.04691
[22] J. Preskill, Quantum computing and the entanglement frontier, 25th Solvay Conference on Physics (2011), arXiv:1203.5813. arXiv:1203.5813
[23] S. Khot, Hardness of approximation, Proceedings of the International Congress of Mathematicians (2014).
[24] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm, arXiv:1411.4028 (2014). arXiv:1411.4028
[25] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum-classical algorithms, New J. Phys. 18, 023023 (2016), arXiv:1509.04279, 10.1038/ncomms5213. https://doi.org/10.1038/ncomms5213 arXiv:1509.04279
[26] D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, Journal of the ACM 51, 385-463 (2004), arXiv:cs/0111050, 10.1145/990308.990310. https://doi.org/10.1145/990308.990310 arXiv:cs/0111050
[27] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521, 436-444 (2015), 10.1038/nature14539. https://doi.org/10.1038/nature14539
[28] T. F. Rnnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining and detecting quantum speedup, Science 345, 420-424 (2014), 10.1126/science.1252319. https://doi.org/10.1126/science.1252319
[29] S. Mandr, H. G. Katzgraber, and C. Thomas, The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again), Quantum Sci. Technol. 2, 038501 (2017), arXiv:1703.00622, 10.1088/2058-9565/aa7877. https://doi.org/10.1088/2058-9565/aa7877 arXiv:1703.00622
[30] T. Albash and D. A. Lidar, Adiabatic quantum computing, Rev. Mod. Phys. 90, 015002 (2018), arXiv:1611.04471, 10.1103/RevModPhys.90.015002. https://doi.org/10.1103/RevModPhys.90.015002 arXiv:1611.04471
[31] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, Adiabatic quantum computation is equivalent to standard quantum computation, SIAM Rev. 50, 755-787 (2008), arXiv:quant-ph/0405098. arXiv:quant-ph/0405098
[32] S. Bravyi, D. DiVincenzo, R. I. Oliveira, and B. M. Terhal, The complexity of stoquastic local Hamiltonian problems, Quant. Inf. Comp. 8, 0361-0385 (2008), arXiv:quant-ph/0606140. arXiv:quant-ph/0606140
[33] M. Jarret, S. P. Jordan, and B. Lackey, Adiabatic optimization versus diffusion Monte Carlo, Phys. Rev. A 94, 042318 (2016), arXiv:1607.03389, 10.1103/PhysRevA.94.042318. https://doi.org/10.1103/PhysRevA.94.042318 arXiv:1607.03389
[34] A. D. King, J. Carrasquilla, I. Ozfidan, J. Raymond, E. Andriyash, A. Berkley, M. Reis, T. M. Lanting, R. Harris, G. Poulin-Lamarre, A. Yu. Smirnov, C. Rich, F. Altomare, P. Bunyk, J. Whittaker, L. Swenson, E. Hoskinson, Y. Sato, M. Volkmann, E. Ladizinsky, M. Johnson, J. Hilton, and M. H. Amin, Observation of topological phenomena in a programmable lattice of 1,800 qubits, arXiv:1803.02047 (2018). arXiv:1803.02047
[35] I. H. Kim, Noise-resilient preparation of quantum many-body ground states, arXiv:1703.00032 (2017). arXiv:1703.00032
[36] I. H. Kim and B. Swingle, Robust entanglement renormalization on a noisy quantum computer, arXiv:1711.07500 (2017). arXiv:1711.07500
[37] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195-202 (2017), arXiv:1611.09347, 10.1038/nature23474. https://doi.org/10.1038/nature23474 arXiv:1611.09347
[38] S. Aaronson, Read the fine print, Nature Physics 11, 291-293 (2015), 10.1038/nphys3272. https://doi.org/10.1038/nphys3272
[39] X. Gao, Z. Zhang, and L. Duan, An efficient quantum algorithm for generative machine learning, arXiv:1711.02038 (2017). arXiv:1711.02038
[40] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103, 150502 (2009), arXiv:0811.3171, 10.1103/PhysRevLett.103.150502. https://doi.org/10.1103/PhysRevLett.103.150502 arXiv:0811.3171
[41] B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Phys. Rev. Lett. 110, 250504 (2013), arXiv:1301.2340, 10.1103/PhysRevLett.110.250504. https://doi.org/10.1103/PhysRevLett.110.250504 arXiv:1301.2340
[42] A. Montanaro and S. Pallister, Quantum algorithms and the finite element method, Phys. Rev. A 93, 032324 (2016), arXiv:1512.05903, 10.1103/PhysRevA.93.032324. https://doi.org/10.1103/PhysRevA.93.032324 arXiv:1512.05903
[43] P. C. S. Costa, S. Jordan, and A. Ostrander, Quantum algorithm for simulating the wave equation, arXiv:1711.05394 (2017). arXiv:1711.05394
[44] I. Kerenidis and A. Prakash, Quantum recommendation systems, arXiv:1603.08675 (2016). arXiv:1603.08675
[45] E. Tang, A quantum-inspired classical algorithm for recommendation systems, Electronic Colloquium on Computational Complexity, TR18-12 (2018).
[46] F. G. S. L. Brando and K. Svore, Quantum speed-ups for semidefinite programming, Proceedings of FOCS 2017, arXiv:1609.05537 (2017). arXiv:1609.05537
[47] F. G. S. L. Brando, A. Kalev, T. Li, C. Y.-Y. Lin, K. M. Svore, and X. Wu, Exponential quantum speed-ups for semidefinite programming with applications to quantum learning, arXiv:1710.02581 (2017). arXiv:1710.02581
[48] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, Elucidating reaction mechanisms on quantum computers, PNAS 117, 7555-7560 (2017), arXiv:1605.03590, 10.1073/pnas.1619152114. https://doi.org/10.1073/pnas.1619152114 arXiv:1605.03590
[49] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, and M. Troyer, Solving strongly correlated electron models on a quantum computer, Phys. Rev. A 92, 062310 (2015), arXiv:1506.05135, 10.1103/PhysRevA.92.062318. https://doi.org/10.1103/PhysRevA.92.062318 arXiv:1506.05135
[50] J. Olson, Y. Cao, J. Romero, P. Johnson, P.-L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, Quantum information and computation for chemistry, NSF Workshop Report, arXiv:1706.05413 (2017). arXiv:1706.05413
[51] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V Vuleti, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579-584 (2017), arXiv:1707.04344, 10.1038/nature24622. https://doi.org/10.1038/nature24622 arXiv:1707.04344
[52] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, and C. Monroe, Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator, arXiv:1708.01044 (2017), 10.1038/nature24654. https://doi.org/10.1038/nature24654 arXiv:1708.01044
[53] E. T. Campbell, B. M. Terhal, and C. Vuillot, The steep road towards robust and universal quantum computation, arXiv:1612.07330 (2016). arXiv:1612.07330
[54] J. J. Wallman and J. Emerson, Noise tailoring for scalable quantum computation via randomized compiling, Phys. Rev. A 94, 052325 (2016), arXiv:1512:01098, 10.1103/PhysRevA.94.052325. https://doi.org/10.1103/PhysRevA.94.052325 arXiv:1512
[55] J. Combes, C. Granade, C. Ferrie, and S. T. Flammia, Logical randomized benchmarking, arXiv:1702.03688 (2017). arXiv:1702.03688
[56] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), arXiv:1208.0928, 10.1103/PhysRevA.86.032324. https://doi.org/10.1103/PhysRevA.86.032324 arXiv:1208.0928
[57] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Information 1, 15001 (2015), arXiv:1501.02813, 10.1038/npjqi.2015.1. https://doi.org/10.1038/npjqi.2015.1 arXiv:1501.02813
[1] Vojtch Havlek, Antonio D. Crcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta, "Supervised learning with quantum-enhanced feature spaces", Nature 567 7747, 209 (2019).
[2] Abhinav Kandala, Kristan Temme, Antonio D. Crcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta, "Error mitigation extends the computational reach of a noisy quantum processor", Nature 567 7749, 491 (2019).
[3] Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, Kelly Boothby, Paul I. Bunyk, Colin Enderud, Alexandre Frchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J. Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy Hilton, and Mohammad H. Amin, "Observation of topological phenomena in a programmable lattice of 1,800 qubits", Nature 560 7719, 456 (2018).
[4] Seth Lloyd and Christian Weedbrook, "Quantum Generative Adversarial Learning", Physical Review Letters 121 4, 040502 (2018).
[5] Victor V. Albert, Kyungjoo Noh, Kasper Duivenvoorden, Dylan J. Young, R. T. Brierley, Philip Reinhold, Christophe Vuillot, Linshu Li, Chao Shen, S. M. Girvin, Barbara M. Terhal, and Liang Jiang, "Performance and structure of single-mode bosonic codes", Physical Review A 97 3, 032346 (2018).
[6] Panagiotis Kl. Barkoutsos, Jerome F. Gonthier, Igor Sokolov, Nikolaj Moll, Gian Salis, Andreas Fuhrer, Marc Ganzhorn, Daniel J. Egger, Matthias Troyer, Antonio Mezzacapo, Stefan Filipp, and Ivano Tavernelli, "Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions", Physical Review A 98 2, 022322 (2018).
[7] Guillaume Verdon, Michael Broughton, Jarrod R. McClean, Kevin J. Sung, Ryan Babbush, Zhang Jiang, Hartmut Neven, and Masoud Mohseni, "Learning to learn with quantum neural networks via classical neural networks", arXiv:1907.05415.
[8] Pierre-Luc Dallaire-Demers and Nathan Killoran, "Quantum generative adversarial networks", Physical Review A 98 1, 012324 (2018).
[9] Gavin E. Crooks, "Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition", arXiv:1905.13311.
[10] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini, "Hierarchical quantum classifiers", npj Quantum Information 4, 65 (2018).
[11] J. Preskill, "Simulating quantum field theory with a quantum computer", The 36th Annual International Symposium on Lattice Field Theory. 22-28 July 24 (2018).
[12] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio Boixo, "Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions", Physical Review Applied 9 4, 044036 (2018).
[13] Sam McArdle, Suguru Endo, Alan Aspuru-Guzik, Simon Benjamin, and Xiao Yuan, "Quantum computational chemistry", arXiv:1808.10402.
[14] Jianxin Chen, Fang Zhang, Cupjin Huang, Michael Newman, and Yaoyun Shi, "Classical Simulation of Intermediate-Size Quantum Circuits", arXiv:1805.01450.
[15] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao, "The Expressive Power of Parameterized Quantum Circuits", arXiv:1810.11922.
[16] Tameem Albash and Daniel A. Lidar, "Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing", Physical Review X 8 3, 031016 (2018).
[17] Ling Hu, Shu-Hao Wu, Weizhou Cai, Yuwei Ma, Xianghao Mu, Yuan Xu, Haiyan Wang, Yipu Song, Dong-Ling Deng, Chang-Ling Zou, and Luyan Sun, "Quantum generative adversarial learning in a superconducting quantum circuit", Science Advances 5 1, eaav2761 (2019).
[18] Aram Harrow and John Napp, "Low-depth gradient measurements can improve convergence in variational hybrid quantum-classical algorithms", arXiv:1901.05374.
[19] Guillaume Verdon, Jason Pye, and Michael Broughton, "A Universal Training Algorithm for Quantum Deep Learning", arXiv:1806.09729.
[20] Kentaro Heya, Yasunari Suzuki, Yasunobu Nakamura, and Keisuke Fujii, "Variational Quantum Gate Optimization", arXiv:1810.12745.
[21] Ramis Movassagh, "Quantum supremacy and random circuits", arXiv:1909.06210.
[22] Bryan O'Gorman, William J. Huggins, Eleanor G. Rieffel, and K. Birgitta Whaley, "Generalized swap networks for near-term quantum computing", arXiv:1905.05118.
[23] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D. Johnson, Mria Kieferov, Ian D. Kivlichan, Tim Menke, Borja Peropadre, Nicolas P. D. Sawaya, Sukin Sim, Libor Veis, and Aln Aspuru-Guzik, "Quantum Chemistry in the Age of Quantum Computing", arXiv:1812.09976.
[24] Sebastien Piat, Nairi Usher, Simone Severini, Mark Herbster, Tommaso Mansi, and Peter Mountney, "Image classification with quantum pre-training and auto-encoders", International Journal of Quantum Information 16 8, 1840009-332 (2018).
[25] Eric R. Anschuetz, Jonathan P. Olson, Aln Aspuru-Guzik, and Yudong Cao, "Variational Quantum Factoring", arXiv:1808.08927.
[26] Brian Swingle and Nicole Yunger Halpern, "Resilience of scrambling measurements", Physical Review A 97 6, 062113 (2018).
[27] Xun Gao and Luming Duan, "Efficient classical simulation of noisy quantum computation", arXiv:1810.03176.
[28] Jonathan Romero and Alan Aspuru-Guzik, "Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions", arXiv:1901.00848.
[29] Maria Schuld and Nathan Killoran, "Quantum machine learning in feature Hilbert spaces", arXiv:1803.07128.
[30] Swamit S. Tannu and Moinuddin K. Qureshi, "A Case for Variability-Aware Policies for NISQ-Era Quantum Computers", arXiv:1805.10224.
[31] Mark Fingerhuth, Tom Babej, and Christopher Ing, "A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding", arXiv:1810.13411.
[32] Sumsam Ullah Khan, Ahsan Javed Awan, and Gemma Vall-Llosera, "K-Means Clustering on Noisy Intermediate Scale Quantum Computers", arXiv:1909.12183.
[33] Gushu Li, Yufei Ding, and Yuan Xie, "Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices", arXiv:1809.02573.
[34] A. Garcia-Saez and J. I. Latorre, "Addressing hard classical problems with Adiabatically Assisted Variational Quantum Eigensolvers", arXiv:1806.02287.
[35] Javier Gil Vidal and Dirk Oliver Theis, "Calculus on parameterized quantum circuits", arXiv:1812.06323.
[36] Kazuki Ikeda, Yuma Nakamura, and Travis S. Humble, "Application of Quantum Annealing to Nurse Scheduling Problem", Scientific Reports 9, 12837 (2019).
[37] Alwin Zulehner and Robert Wille, "Compiling SU(4) Quantum Circuits to IBM QX Architectures", arXiv:1808.05661.
[38] Juan Miguel Arrazola, Thomas R. Bromley, and Patrick Rebentrost, "Quantum approximate optimization with Gaussian boson sampling", Physical Review A 98 1, 012322 (2018).
[39] Zhang Jiang, Jarrod McClean, Ryan Babbush, and Hartmut Neven, "Majorana Loop Stabilizer Codes for Error Mitigation in Fermionic Quantum Simulations", Physical Review Applied 12 6, 064041 (2019).
[40] Salonik Resch and Ulya R. Karpuzcu, "Quantum Computing: An Overview Across the System Stack", arXiv:1905.07240.
[41] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard, "Simulation of quantum circuits by low-rank stabilizer decompositions", arXiv:1808.00128.
[42] Zhong-Xiao Man, Yun-Jie Xia, and Rosario Lo Franco, "Temperature effects on quantum non-Markovianity via collision models", Physical Review A 97 6, 062104 (2018).
View post:
Quantum Computing in the NISQ era and beyond Quantum
- D-Wave enters agreement to sell up to $400M shares from time to time - Yahoo Finance - June 14th, 2025 [June 14th, 2025]
- IBM is building a large-scale quantum computer that 'would require the memory of more than a quindecillion of the world's most powerful... - June 14th, 2025 [June 14th, 2025]
- Prediction: This Quantum Computing Stock Will Surge in 2025 - The Globe and Mail - June 14th, 2025 [June 14th, 2025]
- IBMs Fault-Tolerant Quantum Computer Breakthrough: Exec More Comfortable Than Ever About 2029 Delivery - TechRepublic - June 14th, 2025 [June 14th, 2025]
- Protection against quantum computing threats now within grasp for companies and institutions - Orange - June 14th, 2025 [June 14th, 2025]
- Planckian Partners With University of Naples to Accelerate Next-Gen Quantum Processor - The Quantum Insider - June 14th, 2025 [June 14th, 2025]
- Bitcoin devs scramble to protect $2.2tn blockchain from looming quantum computer threat - dlnews.com - June 14th, 2025 [June 14th, 2025]
- Quantum Art to Advance Scalable Quantum Computing Through Logical Qubit Compiler and NVIDIA CUDA-Q Integration - The Quantum Insider - June 14th, 2025 [June 14th, 2025]
- Why Shares of D-Wave Quantum Are Sinking This Week - The Motley Fool - June 14th, 2025 [June 14th, 2025]
- Mind-Blowing Quantum Leap: IBMs Groundbreaking Fault-Tolerant PC Set to Revolutionize Tech by 2029Prepare for Unprecedented Computational Power -... - June 14th, 2025 [June 14th, 2025]
- Why it's time to move beyond qubits for assessing quantum progress - Diginomica - June 14th, 2025 [June 14th, 2025]
- Quantum Computers Pose a Grave Risk to The Future. Here's Why. - ScienceAlert - June 10th, 2025 [June 10th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Yahoo Finance - June 10th, 2025 [June 10th, 2025]
- At 40 ISC 2025 Continues to Connect the Dots - HPCwire - June 10th, 2025 [June 10th, 2025]
- Vodafone teams up with Orca for quantum-powered network optimisation - Capacity Media - June 10th, 2025 [June 10th, 2025]
- IonQ goes quantum shopping: Buys Oxford Ionics for $1.075B - Silicon Canals - June 10th, 2025 [June 10th, 2025]
- Infleqtion Selected to Power the UKs Largest Quantum Computing Breakthrough - Business Wire - June 10th, 2025 [June 10th, 2025]
- BTQ Technologies Announces Strategic Partnership with QPerfect to Achieve Quantum Advantage Using Neutral Atom Quantum Processors - WV News - June 10th, 2025 [June 10th, 2025]
- Quantum computers are on the edge of revealing new particle physics - New Scientist - June 10th, 2025 [June 10th, 2025]
- Where Will IonQ Be in 5 Years? - The Motley Fool - June 10th, 2025 [June 10th, 2025]
- IonQ buys Oxford Ionics for $1.075B: 6 things to know about it - Tech Funding News - June 10th, 2025 [June 10th, 2025]
- IBM plans to build first-of-its-kind quantum computer by 2029 after 'solving key bottleneck' - Live Science - June 10th, 2025 [June 10th, 2025]
- IBM aims to build the worlds first large-scale, error-corrected quantum computer by 2028 - MIT Technology Review - June 10th, 2025 [June 10th, 2025]
- IBM announced that it will release a quantum computer that has solved the error problem by 2029. Qua.. - - June 10th, 2025 [June 10th, 2025]
- Vodafone aims to leverage quantum computer to streamline broadband installation routes - Telecompaper - June 10th, 2025 [June 10th, 2025]
- This tiny quantum computer could blow massive data centers out of the water with speed, power, and pure physics - TechRadar - June 1st, 2025 [June 1st, 2025]
- Where Will Rigetti Computing Be in 5 Years? - Yahoo Finance - June 1st, 2025 [June 1st, 2025]
- IonQ vs. Microsoft: Which Quantum Cloud Stock Is the Better Buy Today? - Zacks Investment Research - June 1st, 2025 [June 1st, 2025]
- Q1 2025 Quantum Technology Investment: Whats Driving the Surge in Quantum Investment? - The Quantum Insider - June 1st, 2025 [June 1st, 2025]
- Where Will Rigetti Computing Be in 5 Years? - The Motley Fool - June 1st, 2025 [June 1st, 2025]
- Our Online World Relies on Encryption. What Happens If It Fails? - Boston University - June 1st, 2025 [June 1st, 2025]
- Jim Cramer on D-Wave Quantum (QBTS): Of the Ones That Are Out There, This is the Best - Insider Monkey - June 1st, 2025 [June 1st, 2025]
- It Might Actually Be 20 Times Easier for Quantum Computers to Break Bitcoin, Google Says - Decrypt - June 1st, 2025 [June 1st, 2025]
- Want to Invest in Quantum Computing? 2 Stocks That Are Great Buys Right Now. - The Motley Fool - June 1st, 2025 [June 1st, 2025]
- IonQ vs. Microsoft: Which Quantum Cloud Stock Is the Better Buy Today? - Yahoo Finance - June 1st, 2025 [June 1st, 2025]
- CEOs who aren't yet preparing for the quantum revolution are 'already too late,' IBM exec says - Business Insider - June 1st, 2025 [June 1st, 2025]
- New quantum visualisation techniques could accelerate the arrival of fault-tolerant quantum computers - University of Oxford - June 1st, 2025 [June 1st, 2025]
- Marylands Quantum Capital Ambitions Rely on UMD Physicist Ronald Walsworth - Source of the Spring - June 1st, 2025 [June 1st, 2025]
- We asked an expert about quantum computer threat as Google and BlackRock ring the alarm - Crypto News - June 1st, 2025 [June 1st, 2025]
- Whats Happening With IONQ Stock? - Trefis - June 1st, 2025 [June 1st, 2025]
- New Startup Sygaldry Aims to Rethink AI Infrastructure With Quantum Hardware - The Quantum Insider - June 1st, 2025 [June 1st, 2025]
- Breaking encryption with a quantum computer just got 20 times easier - New Scientist - May 26th, 2025 [May 26th, 2025]
- D-Wave launches the Advantage2 quantum computer with more than 4,400 qubits - SiliconANGLE - May 26th, 2025 [May 26th, 2025]
- Nvidia in Talks to Invest in Quantum Startup PsiQuantum - The Information - May 19th, 2025 [May 19th, 2025]
- Quantum Computers Just Outsmarted Supercomputers Heres What They Solved - SciTechDaily - May 19th, 2025 [May 19th, 2025]
- Should You Buy IonQ Stock to Ride the Quantum Computing Revolution? The Answer May Surprise You - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- D-Wave Quantum Stock Soaring On 509% Revenue Pop And Growth Prospects - Forbes - May 19th, 2025 [May 19th, 2025]
- Quantum Machines Launches Open-Source Framework that Cuts Quantum Computer Calibration From Hours to Minutes - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Silicon qubits bring scalable quantum computing closer to reality - The Brighter Side of News - May 19th, 2025 [May 19th, 2025]
- Quantum Computers Are Here, but Are Cybersecurity Professionals Ready? - IoT World Today - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Stock Tumbles After Last Week's 50% SurgeWatch These Key Levels - Investopedia - May 19th, 2025 [May 19th, 2025]
- Nvidia in talks to invest in PsiQuantum - Tom's Hardware - May 19th, 2025 [May 19th, 2025]
- Quantum computing: What is quantum error correction (QEC) and why is it so important? - Live Science - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Roadmaps: A Look at The Maps And Predictions of Major Quantum Players - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Quantum Computing Stock Surges as Firm Swings to Profit - Investopedia - May 19th, 2025 [May 19th, 2025]
- $850bn by 2040! Should I buy quantum computing stocks for my Stocks and Shares ISA? - Yahoo - May 19th, 2025 [May 19th, 2025]
- France, Germany, and the Netherlands Launch $33M Trilateral Quantum Initiative - The Quantum Insider - May 19th, 2025 [May 19th, 2025]
- Oxford Quantum Circuits Appoints Former GCHQ Director Sir Jeremy Fleming to Board - HPCwire - May 19th, 2025 [May 19th, 2025]
- Outside the Box: Socratic Machines and Quantum Ghosts - Fair Observer - May 19th, 2025 [May 19th, 2025]
- Preparing for the post-quantum era: a CIOs guide to securing the future of encryption - CyberScoop - May 19th, 2025 [May 19th, 2025]
- Quantum Computing First Quarter 2025 Earnings: EPS Beats Expectations, Revenues Lag - Yahoo Finance - May 19th, 2025 [May 19th, 2025]
- Nvidia in Talks to Invest in Quantum Computing Startup - The Information - May 19th, 2025 [May 19th, 2025]
- IonQ Stock Is Up 294% in the Past Year. Here's My Prediction For What Comes Next - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- Does Billionaire Israel Englander Know Something Wall Street Doesn't? He Sold a Quantum Computing Stock Analysts Say to Buy. - The Motley Fool - May 19th, 2025 [May 19th, 2025]
- From R&D to ROI: The quantum computing revolution starts here - Techcircle - May 19th, 2025 [May 19th, 2025]
- How quantum computers could break RSA encryption and cure Alzheimer's - Interesting Engineering - May 19th, 2025 [May 19th, 2025]
- The race to perfect the quantum computer is on, and UC is helping America hold its lead - University of California - May 15th, 2025 [May 15th, 2025]
- Keysight Quantum Control System Embedded within Fujitsu and RIKENs World-Leading 256-Qubit Quantum Computer - Morningstar - May 15th, 2025 [May 15th, 2025]
- Keysight Technologies, Inc. Quantum Control System Embedded Within Fujitsu and Riken's 256-Qubit Quantum Computer - marketscreener.com - May 15th, 2025 [May 15th, 2025]
- The Worlds First Song Created by Artificial Intelligence Using a Quantum Computer Is HereIt Sounds Nothing Like What You Expect - The Daily Galaxy - May 11th, 2025 [May 11th, 2025]
- Regulation watch: how governments are dealing with the risks of quantum computing - Strategic Risk Global - May 11th, 2025 [May 11th, 2025]
- The age of the hype cycle: why science needs room to breathe - varsity.co.uk - May 11th, 2025 [May 11th, 2025]
- Quantums Double-Edged Sword: Balancing Risk and Readiness - InformationWeek - May 11th, 2025 [May 11th, 2025]
- The Computational Limit of Life May Be Much Higher Than We Thought - Yahoo - May 11th, 2025 [May 11th, 2025]
- BlackRock beefs up quantum compute threat warnings to Bitcoin investors - dlnews.com - May 11th, 2025 [May 11th, 2025]
- From false alarms to real threats: Protecting cryptography against quantum - cio.com - May 11th, 2025 [May 11th, 2025]
- Boosting quantum error correction using AI - Phys.org - May 11th, 2025 [May 11th, 2025]
- Laws governing finance and investment can help to protect society from dangers of quantum computing, study shows - Phys.org - May 11th, 2025 [May 11th, 2025]
- Quantum computing stocks jump after strong results from D-Wave Quantum (QBTS:NYSE) - Seeking Alpha - May 11th, 2025 [May 11th, 2025]
- Listen to the worlds first song made by a quantum computer and AI - The Next Web - May 10th, 2025 [May 10th, 2025]