Push-Button Entanglement: Scientists Achieve Reliable Quantum Entanglement Between Resting and Flying Qubits – The Quantum Insider
Insider Brief
PRESS RELEASE Entanglement, Einsteins spooky action at a distance, today is THE tool of quantum information science. It is the essential resource for quantum computers and used to transmit quantum information in a future quantum network. But it is highly sensitive and it is an enormous challenge to entangle resting quantum bits (qubits) with flying qubits in the form of photons at the push of a button.
However, a team led by Gerhard Rempe, Director at the Max Planck Institute of Quantum Optics in Garching, Germany, has now succeeded in doing exactly that with atoms connected in parallel. The atoms are sandwiched between two almost perfect mirrors. This setup guarantees reliable interaction with photons as flying qubits a technique pioneered by Gerhard Rempe. Using optical tweezers, the team was able to individually control up to six atoms and entangle each with a photon.
Using a multiplexing technique, the scientists demonstrated an atom-photon entanglement generation with almost 100 percent efficiency, a groundbreaking achievement for distributing entanglement over a quantum network. The work is published today in the journal Science.
Interfaces between resting qubits and flying qubits come into play whenever quantum information needs to be transmitted over long distances.
One aspect is the communication of quantum information over long distances in a future quantum internet, explains Emanuele Distante, who supervised the experiment as a postdoctoral researcher, and is now a researcher at ICFO in Barcelona: The second aspect is the goal of connecting many qubits in a distributed network to form a more powerful quantum computer. Both applications require efficient interfaces between qubits at rest and qubits in motion. This is why many groups around the world are feverishly researching quantum mechanical light-matter interfaces.
Several different technical approaches are being pursued.
Gerhard Rempe and his team in Garching have been working for many years on a method that uses ultracold rubidium atoms trapped between two almost perfect mirrors as an optical resonator.
The focus is on a future quantum internet.
This approach has an inherent advantage because it allows a trapped atom to interact highly efficiently with a photon, which bounces back and forth between the two mirrors about twenty thousand times like a ping-pong ball. Whats more, because one of the two mirrors is slightly more transparent than the other, the photon leaves in a precisely predetermined direction. This means that it is not lost, but can be reliably coupled into an optical fiber. If this photon is entangled with the atom using a specific protocol of laser pulses, this entanglement is maintained as the photon travels.
Multiplexing to overcome transmission losses
In 2012, the Garching team succeeded in entangling an atom in one resonator with a second atom in another resonator via photon radio through a 60-metre-long glass fiber. With the help of the transmitted photon, they formed an extended entangled quantum object from the two atoms. However, the photon must not get lost in the glass fiber along the way, and this is precisely the problem with a longer journey. The solution, at least for medium distances of a few kilometers, is called multiplexing. Multiplexing is a standard method used in classical information technology to make transmission more robust. Think of it as a radio link through a noisy area: If you send the radio signal along several parallel channels, the probability that it will reach the receiver via at least one channel increases.
Without multiplexing, even our current Internet would not work, explains Distante: But transferring this method to quantum information systems is a particular challenge.
Multiplexing is not only interesting for more secure transmission over longer distances in a future quantum internet, but also for a local quantum network. One example is the distributed quantum computer, which consists of several smaller processors that are connected via short optical fibers. Its resting qubits could be entangled more reliably by multiplexing with flying qubits to form a distributed, more powerful quantum computer.
Laser tweezers for handling atoms
The challenge for the Garching team was to load several atoms into a resonator as resting qubits and to address them individually. Only if the position of the atoms is known can they be entangled in parallel with one photon each in order to achieve multiplexing. Hence, the team developed a technique for inserting optical tweezers into the narrow resonator.
The mirrors are only about half a millimeter apart, explains Lukas Hartung, PhD student and first author of the paper in Science.
The optical tweezers consist of fine laser beams that are strong enough to capture an atom in their focus and move it precisely to the desired position. Using up to six such tweezers, the team was able to arrange a corresponding number of floating rubidium atoms in the cavity to form a neat qubit lattice. Since the atoms can easily remain in the trap for a minute a little eternity in quantum physics they could easily be entangled with one photon each. This works almost one hundred percent of the time, says Distante, emphasizing the key advantage of this technique: the entanglement distribution works almost deterministically, i.e. at the push of a button.
Scalable to considerably more qubits
In order to achieve this, the team used a microscope lens objective positioned above the resonator with micrometer precision in order to focus the individual beams of the light tweezers into the narrow mirror cabinet. The tweezer beams are generated via so-called acousto-optical deflectors and can therefore be controlled individually. Precise adjustment of the laser tweezers in the optics requires a great deal of dexterity. Mastering this challenge was the cornerstone for the success of the experiment, summarizes Stephan Welte, who helped develop the technology as part of the team and is now a researcher at ETH Zurich.
The current experiment gives hope that the method can be scaled up to considerably more qubits without losses: the team estimates that up to 200 atoms could be controlled in such a resonator. As these quantum bits can be controlled very well in the resonator, this would be a huge step forward. And as the interface even feeds one hundred percent of the entangled photons into the optical fiber, a network of many resonators, each with 200 atoms as resting qubits, would be thinkable. This would result in a powerful quantum computer. It is still a dream of the future. But with the laser tweezers, the Garching team now has a considerable part of this future firmly under control.
See more here:
Push-Button Entanglement: Scientists Achieve Reliable Quantum Entanglement Between Resting and Flying Qubits - The Quantum Insider
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]