Optical computing: the power of light – TechHQ
Optical computers work through photonic transfer. They could be fast, with minimal heat loss during transfer. Theres controversy over the promises of photonic technology.
Optical computing is fast becoming a major player, especially in the realm of AI. Youd be forgiven for never having heard of it, but it involves lasers and light-speed, so why not find out more?
Optical computers, also known as photonic computers, perform digital computations using you guessed it photons. Light waves produced by lasers or incoherent sources are used as a primary means for carrying out numerical calculations, reasoning, artificial intelligence, data processing, data storage and data communications for computing.
Like any computer, an optical computer needs three things to function well:
The history of optical computing is interlinked with the development of radar systems. In the 1960s, the invention of the laser saw the first schemes for an all-optical computer proposed, and since the 1990s, the emphasis has shifted to optical interconnection of arrays of semiconductor smart pixels.
Traditional computers use electrons to carry out calculations, but photons have the capacity to enable a higher bandwidth; visible and infrared (IR) beams flow across one another without interacting, unlike electrons, so they can be constrained to what is effectively two-dimensional computing.
Three-dimensional wiring is necessary in traditional computers to direct electrical currents around one another. So, a photonic computer can be smaller than its more common counterpart. Like traditional computing, optical computers use logic gates and binary routines to perform calculations, but the way these calculations are performed differs.
Optical computing can achieve similarly efficient and reliable computation to the silicon channels and copper wires that enable electronic computers to function, by using plasmonic nanoparticles. Further, the absence of physical wires means that optical computers are less prone to damage from heat or vibrations.
Because photons can be easily manipulated and controlled, photonic computers are faster and more efficient. Photon movements can be guided and controlled in such a way that they can turn corners and carry on without a significant loss of power. Light can be easily contained and loses less information during travel, which is especially useful in situations where the interconnects might heat up, which slows electrons movement.
Photonics have a high throughput of >1TB/s per channel (of which there can be many in close proximity), compared to copper wires capability of 1GB/s per channel.
The hope is that the use of light or information shuttling will result in the development of exascale computers. Exascale computers could perform billions of calculations every second, 1000x faster than the current fastest systems.
So, we can weigh up the advantages and disadvantages of this alternative mode as follows:
Advantages of optical computing:
The disadvantages are:
There are disagreements among researchers when it comes to the capabilities of optical computers. Whether or not they can compete with semiconductor-based electronic computers in terms of speed, power consumption, cost, and size is an open question.
Critics argue that real-world logic systems require logic level restoration, cascadability, fan-out and input-output isolation, all of which are currently provided by electronic transistors at low cost, low power, and high speed. For optical logic to be competitive beyond niche applications, major breakthroughs in non-linear optical device technology would be required, or even a change in the nature of computing itself.
Another option would be creating a hybrid system that integrates optical solutions into digital computing. However, there are impediments to the use of optics in digital computing that perhaps demand a much more guarded view of the ability of optics to compete with digital electronics.
Digital computing requires nonlinear elements to process digital data. The required functionalities of nonlinear elements are all delivered by transistor circuits in electronic computing. For large scalable logic circuits, no optical element or circuit, active or passive, can do all that and also compete with transistors in the metrics of energy consumption and small device footprint.
In digital communications, fiber optic data transfer is already prevalent. Fiber optics use light for data manipulation. This is the area in which optical technology has advanced the most: its used enough that its already common in the lexicon of data transfer.
Fiber optic cables can contain a varying number of glass fibers, along which information is transmitted as light pulses. Fiber optic cables have advantages over copper cables, including higher bandwidth and transmit speeds. You might have noticed that these pros echo those of optical computing.
However, making the switch is much simpler when it comes to fiber optics cables, which are already used for internet, television and telephone connections.
Areas of active research aiming to overcome some of the current limitations of photonic computing include:
A spinout of MIT, Lightelligence is developing the next generation of computing hardware. Founded in 2017, the company claims to have transformed the cutting-edge technology of photonics into groundbreaking computing solutions, which not only bring exponential improvements in computing power, but also dramatically reduce energy consumption.
In basic terms, its research uses a silicon fabrication platform used for traditional semiconductor chips, but in a novel way. In the optical domain, arithmetic computations are done with physics instead of with logic gate transistors that require multiple clocks.
Yichen Shen, co-founder and CEO of Lightelligence, said that because the system its developing generates very little heat, it has a lower power consumption than electron-powered chips.
Were changing the fundamental way computing is done, and I think were doing it at the right time in history, says Shen. We believe optics is going to be the next computing platform, at least for linear operations like AI.
Yes like all of the tech world at the moment, optical computing has a vested interest in AI. However, instead of thinking about how artificial intelligence could help it, photonic computing might facilitate the further development of AI.
For example, self-driving vehicles rely on cameras and AI computations to make quick decisions. The conventional chip doesnt think fast enough to make the split-second decisions necessary, so faster computational imaging is needed for quick decision making. Thats what Lightelligence says its achieving using photonics.
We couldnt talk about radical changes to computational systems without touching on quantum computing. Due to the unique properties of quantum mechanics, quantum computing can solve problems beyond the capabilities of the most advanced computers, including photonic.
The area in which optical computing is ahead of quantum is the speed at which (simpler) calculations can be performed. In some cases, optical computing is faster than quantum. In many cases, optical computing is being researched for use in tandem with quantum computers. Both have the potential to revolutionize computation and data processing.
Weve yet to see an optical computer, but were at the frontier of developments. Since 2012, Moores law (that the number of transistors in an integrated circuit doubles every two years) has been defunct: AI compute doubles every 3.4 months. Weve come incredibly far, incredibly fast.
Photonic computers might be closer than we think.
Read more from the original source:
Optical computing: the power of light - TechHQ
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]