MIT Makes a Significant Advance Toward the Full Realization of Quantum Computation – SciTechDaily
A tunable coupler can switch the qubit-qubit interaction on and off. Unwanted, residual (ZZ) interaction between the two qubits is eliminated by harnessing higher energy levels of the coupler. Credit: Krantz Nanoart
MIT researchers demonstrate a way to sharply reduce errors in two-qubit gates, a significant advance toward fully realizing quantum computation.
MIT researchers have made a significant advance on the road toward the full realization of quantum computation, demonstrating a technique that eliminates common errors in the most essential operation of quantum algorithms, the two-qubit operation or gate.
Despite tremendous progress toward being able to perform computations with low error rates with superconducting quantum bits (qubits), errors in two-qubit gates, one of the building blocks of quantum computation, persist, says Youngkyu Sung, an MIT graduate student in electrical engineering and computer science who is the lead author of a paper on this topicpublished on June 16, 2021, in Physical Review X. We have demonstrated a way to sharply reduce those errors.
In quantum computers, the processing of information is an extremely delicate process performed by the fragile qubits, which are highly susceptible to decoherence, the loss of their quantum mechanical behavior. In previous research conducted by Sung and the research group he works with, MIT Engineering Quantum Systems, tunable couplers were proposed, allowing researchers to turn two-qubit interactions on and off to control their operations while preserving the fragile qubits. The tunable coupler idea represented a significant advance and was cited, for example, by Google as being key to their recent demonstration of the advantage that quantum computing holds over classical computing.
Still, addressing error mechanisms is like peeling an onion: Peeling one layer reveals the next. In this case, even when using tunable couplers, the two-qubit gates were still prone to errors that resulted from residual unwanted interactions between the two qubits and between the qubits and the coupler. Such unwanted interactions were generally ignored prior to tunable couplers, as they did not stand out but now they do. And, because such residual errors increase with the number of qubits and gates, they stand in the way of building larger-scale quantum processors. ThePhysical Review Xpaper provides a new approach to reduce such errors.
We have now taken the tunable coupler concept further and demonstrated near 99.9 percent fidelity for the two major types of two-qubit gates, known as Controlled-Z gates and iSWAP gates, says William D. Oliver, an associate professor of electrical engineering and computer science, MIT Lincoln Laboratory fellow, director of the Center for Quantum Engineering, and associate director of the Research Laboratory of Electronics, home of the Engineering Quantum Systems group. Higher-fidelity gates increase the number of operations one can perform, and more operations translates to implementing more sophisticated algorithms at larger scales.
To eliminate the error-provoking qubit-qubit interactions, the researchers harnessed higher energy levels of the coupler to cancel out the problematic interactions. In previous work, such energy levels of the coupler were ignored, although they induced non-negligible two-qubit interactions.
Better control and design of the coupler is a key to tailoring the qubit-qubit interaction as we desire. This can be realized by engineering the multilevel dynamics that exist, Sung says.
The next generation of quantum computers will be error-corrected, meaning that additional qubits will be added to improve the robustness of quantum computation.
Qubit errors can be actively addressed by adding redundancy, says Oliver, pointing out, however, that such a process only works if the gates are sufficiently good above a certain fidelity threshold that depends on the error correction protocol. The most lenient thresholds today are around 99 percent. However, in practice, one seeks gate fidelities that are much higher than this threshold to live with reasonable levels of hardware redundancy.
The devices used in the research, made at MITs Lincoln Laboratory, were fundamental to achieving the demonstrated gains in fidelity in the two-qubit operations, Oliver says.
Fabricating high-coherence devices is step one to implementing high-fidelity control, he says.
Sung says high rates of error in two-qubit gates significantly limit the capability of quantum hardware to run quantum applications that are typically hard to solve with classical computers, such as quantum chemistry simulation and solving optimization problems.
Up to this point, only small molecules have been simulated on quantum computers, simulations that can easily be performed on classical computers.
In this sense, our new approach to reduce the two-qubit gate errors is timely in the field of quantum computation and helps address one of the most critical quantum hardware issues today, he says.
Reference: Realization of High-Fidelity CZ and ZZ-Free iSWAP Gates with a Tunable Coupler by Youngkyu Sung, Leon Ding, Jochen Braumller, Antti Vepslinen, Bharath Kannan, Morten Kjaergaard, Ami Greene, Gabriel O. Samach, Chris McNally, David Kim, Alexander Melville, Bethany M. Niedzielski, Mollie E. Schwartz, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson and William D. Oliver, 16 June 2021, Physical Review X.DOI: 10.1103/PhysRevX.11.021058
Here is the original post:
MIT Makes a Significant Advance Toward the Full Realization of Quantum Computation - SciTechDaily
- Building the world's first open-source quantum computer - Phys.org - January 22nd, 2026 [January 22nd, 2026]
- Rigetti: Not The Quantum Computing Stock To Own - There Are Better Alternatives - Seeking Alpha - January 22nd, 2026 [January 22nd, 2026]
- IQM and Bechtle to install five-qubit quantum computer at Heilbronn University, Germany - BeBeez International - January 22nd, 2026 [January 22nd, 2026]
- Exclusive from 36Kr: Team with Tsinghua and Harvard Backgrounds Developing Quantum Computers, Revenues Double, Secures Hundreds of Millions in... - January 22nd, 2026 [January 22nd, 2026]
- Quantum error correction with logical qubits - EurekAlert! - January 22nd, 2026 [January 22nd, 2026]
- These 3 Giant Tech Stocks Are Poised for Explosive Quantum Growth - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- The quantum-cryptography cliff: From roadmaps to reality - SC Media - January 22nd, 2026 [January 22nd, 2026]
- MIT Researchers Demonstrate Faster Cooling Method for Chip-Based Trapped-Ion Quantum Systems - The Quantum Insider - January 22nd, 2026 [January 22nd, 2026]
- It started with a cat: How 100 years of quantum weirdness powers todays tech - Texas A&M Stories - January 22nd, 2026 [January 22nd, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Network-based Quantum Computing Achieves Distributed Fault-Tolerance with Many Small Nodes - Quantum Zeitgeist - January 22nd, 2026 [January 22nd, 2026]
- RGTI and QUBT: This Analyst Sees the Next Jump in Quantum Stocks - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Building the worlds first open-source quantum computer - University of Waterloo - January 20th, 2026 [January 20th, 2026]
- The 3 Best Quantum Computing Stocks to Buy for 2026 - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- Safeguard Your WAN from Quantum Computing Threats - Cisco Blogs - January 14th, 2026 [January 14th, 2026]
- PsiQuantum Collaborating with Airbus to Advance Quantum Computing for Aerospace - HPCwire - January 14th, 2026 [January 14th, 2026]
- Putting Quantum Computing to the Test - University of Pittsburgh - January 14th, 2026 [January 14th, 2026]
- Xanadu and Thorlabs Partner to Advance Optical Controls for Photonic Quantum Computing - HPCwire - January 14th, 2026 [January 14th, 2026]
- Why Quantum Computers Are Inherently Reversible (And Why That Matters) - Quantum Zeitgeist - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- BTQ Technologies Added to VanEck Quantum Computing UCITS ETF, Expanding European Access to BTQ Through a Regulated UCITS Wrapper - PR Newswire - January 14th, 2026 [January 14th, 2026]
- Singapore and Japan team up on quantum computing - Computer Weekly - January 14th, 2026 [January 14th, 2026]
- Will Quantum Computing Stocks Become the AI Stocks of 2026? - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- Silicon vibrations add a new twist to dark matter research and quantum computing - The Brighter Side of News - January 14th, 2026 [January 14th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - AOL.com - January 14th, 2026 [January 14th, 2026]
- Yaqumo Inc. and Entropica Labs Sign MOU, Witnessed by Singapore and Japan Governments, to Accelerate Fault-Tolerant Quantum Computing - The Quantum... - January 14th, 2026 [January 14th, 2026]
- Quantum Advantage Has Likely Been Achieved The Debate Is Over What Counts - The Quantum Insider - January 14th, 2026 [January 14th, 2026]
- Will quantum computing stocks become the AI stocks of 2026? - MSN - January 14th, 2026 [January 14th, 2026]
- Quantum Computing Stocks To Add to Your Watchlist - January 12th - MarketBeat - January 14th, 2026 [January 14th, 2026]
- Quantum computing revives debate over Bitcoins long-term security - Mugglehead Magazine - January 14th, 2026 [January 14th, 2026]
- Quantum AI: Telco's Next Big Thing or Expensive Distraction? - Telecoms - January 14th, 2026 [January 14th, 2026]
- What does a quantum computer sound like? This artist and scientist are about to find out - Financial Times - January 11th, 2026 [January 11th, 2026]
- Bipartisan Sens. Give Quantum Reauthorization Act Another Chance - MeriTalk - January 11th, 2026 [January 11th, 2026]
- 3 Quantum Computing Stocks That Could Make a Millionaire - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Infleqtion and Churchill X Move Forward on SPAC Combination - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- Quantum computing has advantages over traditional, but still in early innings: BMO (IONQ:NYSE) - Seeking Alpha - January 9th, 2026 [January 9th, 2026]
- D-Wave Buys Quantum Circuits in Shift to Higher Gear - EE Times - January 9th, 2026 [January 9th, 2026]
- Beyond the Hype: 5 Reasons Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Can Crash in 2026 - Nasdaq - January 9th, 2026 [January 9th, 2026]
- Quantum neural network may be able to cheat the uncertainty principle - New Scientist - January 9th, 2026 [January 9th, 2026]
- Q&A: What does cybersecurity look like in the quantum age? - Penn State University - January 9th, 2026 [January 9th, 2026]
- D-Wave Demo At CES 2026 And The Energy Efficiency Of Quantum Computing - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Quantum Computers Extract Scattering Phase Shift In One-Dimensional Systems Using Integrated Correlation Functions - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- How John Clarke's Nobel Prize-Winning Research Paved the Way for Quantum Computing - Berkeley Lab News Center (.gov) - January 9th, 2026 [January 9th, 2026]
- Circle Examines How Crypto and Web3 Ecosystems are Preparing Blockchains for the Quantum Era - Crowdfund Insider - January 9th, 2026 [January 9th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Quantum computing is closer than you think - Federal News Network - January 9th, 2026 [January 9th, 2026]
- Quantum computing company D-Wave acquires new tech in major merger - Washington Times - January 9th, 2026 [January 9th, 2026]
- Josephson junctions quantum computing building blocks are possible with only one superconductor, experiment confirms - Technology Org - January 9th, 2026 [January 9th, 2026]
- After a Year of Quantum Awareness, 2026 Becomes the Year of Quantum Security - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- The best quantum computing stock to buy hand over fist in 2026 - MSN - January 9th, 2026 [January 9th, 2026]
- Google Willow: The secrets of the world's most powerful quantum computer - BBC - January 8th, 2026 [January 8th, 2026]
- D-Wave: Quantums First Real Revenue Winner (NYSE:QBTS) - Seeking Alpha - January 8th, 2026 [January 8th, 2026]
- D-Wave to Buy Quantum Circuits for $550 Million. Useful Computers Are Coming to Market. - Barron's - January 8th, 2026 [January 8th, 2026]
- DARPA seeks universal translator between different kinds of quantum computer - Breaking Defense - January 8th, 2026 [January 8th, 2026]
- Royal Bank, Telus back $130-million financing by quantum developer Photonic - The Globe and Mail - January 8th, 2026 [January 8th, 2026]
- Qubits Can be Cloned: Scientists Discover First Method to Safely Back up Quantum Information - The Quantum Insider - January 8th, 2026 [January 8th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- Fredkin And Toffoli: The Architects Of Reversible Computation - Quantum Zeitgeist - January 8th, 2026 [January 8th, 2026]
- Quantum Resistance LLC on the Future of Digital Security in a World of Emerging Quantum Computing - International Business Times - January 8th, 2026 [January 8th, 2026]
- Moscow State University and Rosatom Test 72-Qubit Neutral-Atom Quantum Prototype - Quantum Computing Report - January 8th, 2026 [January 8th, 2026]
- Prediction: These 4 quantum computing stocks will skyrocket in 2026 - MSN - January 8th, 2026 [January 8th, 2026]
- D-Wave Rises On Quantum First - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- Are Quantum Computing ETFs the Safest Bet for 10-Year Growth? - Nasdaq - January 8th, 2026 [January 8th, 2026]
- Tech and compliance 2026: What to watch for in AI, cybersecurity and quantum computing - Compliance Week - January 8th, 2026 [January 8th, 2026]
- Using microwave pulses to plug leaks in quantum computers makes them more reliable - Phys.org - December 29th, 2025 [December 29th, 2025]
- 5 Major Quantum Computing Breakthroughs that Shaped 2025 - TipRanks - December 29th, 2025 [December 29th, 2025]
- D-Wave stock slides into year-end as quantum peers retreat in thin trade - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Trends in 2025: Data Reveals Hardware Bets, Cloud Growth And Security Focus - The Quantum Insider - December 29th, 2025 [December 29th, 2025]
- The Neglecton: How Mathematical 'Garbage' Saved The Quantum Computer - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Quantum science and technology: highlights of 2025 - Physics World - December 29th, 2025 [December 29th, 2025]
- Are These 2 Quantum Computing Stocks the Key to Decades of Wealth? - The Motley Fool - December 29th, 2025 [December 29th, 2025]
- The Man Who Knew Too Much: Why Ettore Majoranas 1938 disappearance still haunts quantum computing. - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Breaking The Code: How Peter Shor Proved Quantum Power Was Real - Quantum Zeitgeist - December 29th, 2025 [December 29th, 2025]
- Opinion: Quantum computing is the stock markets next big tech play and these stocks are still cheap - MarketWatch - December 29th, 2025 [December 29th, 2025]
- Quantum computing made measurable progress toward real-world use in 2025 - TechSpot - December 29th, 2025 [December 29th, 2025]
- IonQ drops with quantum peers into year-end, as investors weigh next catalysts - ts2.tech - December 29th, 2025 [December 29th, 2025]
- Forget Rigetti Computing: This Quantum Stock Offers a Far Better Risk-Reward Right Now - Finviz - December 29th, 2025 [December 29th, 2025]
- Quantum Computing Stocks: IonQ, Rigetti, D-Wave and QUBT Slide Into Year-EndWhat to Watch Before Mondays Open - ts2.tech - December 29th, 2025 [December 29th, 2025]