Lighting up the ion trap – MIT News
Walk into a quantum lab where scientists trap ions, and you'll find benchtops full of mirrors and lenses, all focusing lasers to hit an ion trapped in place above a chip. By using lasers to control ions, scientists have learned to harness ions as quantum bits, or qubits, the basic unit of data in a quantum computer. But this laser setup is holding research back making it difficult to experiment with more than a few ions and to take these systems out of the lab for real use.
Now, MIT Lincoln Laboratory researchers have developed a compact way to deliver laser light to trapped ions. In a recent paper published in Nature, the researchers describe a fiber-optic block that plugs into the ion-trap chip, coupling light to optical waveguides fabricated in the chip itself. Through these waveguides, multiple wavelengths of light can be routed through the chip and released to hit the ions above it.
It's clear to many people in the field that the conventional approach, using free-space optics such as mirrors and lenses, will only go so far, says Jeremy Sage, an author on the paper and senior staff in Lincoln Laboratory's Quantum Information and Integrated Nanosystems Group. If the light instead is brought onto the chip, it can be directed around to the many locations where it needs to be. The integrated delivery of many wavelengths may lead to a very scalable and portable platform. We're showing for the first time that it can be done.
Multiple colors
Computing with trapped ions requires precisely controlling each ion independently. Free-space optics have worked well when controlling a few ions in a short one-dimensional chain. But hitting a single ion among a larger or two-dimensional cluster, without hitting its neighbors, is extremely difficult. When imagining a practical quantum computer requiring thousands of ions, this task of laser control seems impractical.
That looming problem led researchers to find another way. In 2016, Lincoln Laboratory and MIT researchers demonstrated a new chip with built-in optics. They focused a red laser onto the chip, where waveguides on the chip routed the light to a grating coupler, a kind of rumble strip to stop the light and direct it up to the ion.
Red light is crucial for doing a fundamental operation called a quantum gate, which the team performed in that first demonstration. But up to six different-colored lasers are needed to do everything required for quantum computation: prepare the ion, cool it down, read out its energy state, and perform quantum gates. With this latest chip, the team has extended their proof of principle to the rest of these required wavelengths, from violet to the near-infrared.
With these wavelengths, we were able to perform the fundamental set of operations that you need to be able to control trapped ions, says John Chiaverini, also an author on the paper. The one operation they didn't perform, a two-qubit gate, was demonstrated by a team at ETH Zrich by using a chip similar to the 2016 work, and is described in a paper in the same Nature issue. This work, paired together with ours, shows that you have all the things you need to start building larger trapped-ion arrays, Chiaverini adds.
Fiber optics
To make the leap from one to multiple wavelengths, the team engineered a method to bond a fiber-optic block directly to the side of the chip. The block consists of four optical fibers, each one specific to a certain range of wavelengths. These fibers line up with a corresponding waveguide patterned directly onto the chip.
Getting the fiber block array aligned to the waveguides on the chip and applying the epoxy felt like performing surgery. It was a very delicate process. We had about half a micronof tolerance and it needed to survive cooldown to4 kelvins, says Robert Niffenegger, who led the experiments and is first author on the paper.
On top of the waveguides sits a layer of glass. On top of the glass are metal electrodes, which produce electric fields that hold the ion in place; holes are cut out of the metal over the grating couplers where the light is released. The entire device was fabricated in the Microelectronics Laboratory at Lincoln Laboratory.
Designing waveguides that could deliver the light to the ions with low loss, avoiding absorption or scattering, was a challenge, as loss tends to increase with bluer wavelengths. It was a process of developing materials, patterning the waveguides, testing them, measuring performance, and trying again. We also had to make sure the materials of the waveguides worked not only with the necessary wavelengths of light, but also that they didn't interfere with the metal electrodes that trap the ion, Sage says.
Scalable and portable
The team is now looking forward to what they can do with this fully light-integrated chip. For one, make more, Niffenegger says. Tiling these chips into an array could bring together many more ions, each able to be controlled precisely, opening the door to more powerful quantum computers.
Daniel Slichter, a physicist at the National Institute of Standards and Technology who was not involved in this research, says, This readily scalable technology will enable complex systems with many laser beams for parallel operations, all automatically aligned and robust to vibrations and environmental conditions, and will in my view be crucial for realizing trapped ion quantum processors with thousands of qubits.
An advantage of this laser-integrated chip is that it's inherently resistant to vibrations. With external lasers, any vibration to the laser would cause it to miss the ion, as would any vibrations to the chip. Now that the laser beams and chip are coupled together, the effects of vibrations are effectively nullified.
This stability is important for the ions to sustain coherence, or to operate as qubits long enough to compute with them. It's also important if trapped-ion sensors are to become portable. Atomic clocks, for example, that are based on trapped ions could keep time much more precisely than today's standard, and could be used to improve the accuracy of GPS, which relies on the synchronization of atomic clocks carried on satellites.
We view this work as an example of bridging science and engineering, that delivers a true advantage to both academia and industry, Sage says. Bridging this gap is the goal of the MIT Center for Quantum Engineering, where Sage is a principal investigator.We need quantum technology to be robust, deliverable, and user-friendly, for people to use who aren't PhDs in quantum physics, Sage says.
Simultaneously, the team hopes that this device can help push academic research. We want other research institutes to use this platform so that they can focus on other challenges like programming and running algorithms with trapped ions on this platform, for example. We see it opening the door to further exploration of quantum physics, Chiaverini says.
More here:
Lighting up the ion trap - MIT News
- The race to perfect the quantum computer is on, and UC is helping America hold its lead - University of California - May 15th, 2025 [May 15th, 2025]
- Keysight Quantum Control System Embedded within Fujitsu and RIKENs World-Leading 256-Qubit Quantum Computer - Morningstar - May 15th, 2025 [May 15th, 2025]
- Keysight Technologies, Inc. Quantum Control System Embedded Within Fujitsu and Riken's 256-Qubit Quantum Computer - marketscreener.com - May 15th, 2025 [May 15th, 2025]
- The Worlds First Song Created by Artificial Intelligence Using a Quantum Computer Is HereIt Sounds Nothing Like What You Expect - The Daily Galaxy - May 11th, 2025 [May 11th, 2025]
- Regulation watch: how governments are dealing with the risks of quantum computing - Strategic Risk Global - May 11th, 2025 [May 11th, 2025]
- The age of the hype cycle: why science needs room to breathe - varsity.co.uk - May 11th, 2025 [May 11th, 2025]
- Quantums Double-Edged Sword: Balancing Risk and Readiness - InformationWeek - May 11th, 2025 [May 11th, 2025]
- The Computational Limit of Life May Be Much Higher Than We Thought - Yahoo - May 11th, 2025 [May 11th, 2025]
- BlackRock beefs up quantum compute threat warnings to Bitcoin investors - dlnews.com - May 11th, 2025 [May 11th, 2025]
- From false alarms to real threats: Protecting cryptography against quantum - cio.com - May 11th, 2025 [May 11th, 2025]
- Boosting quantum error correction using AI - Phys.org - May 11th, 2025 [May 11th, 2025]
- Laws governing finance and investment can help to protect society from dangers of quantum computing, study shows - Phys.org - May 11th, 2025 [May 11th, 2025]
- Quantum computing stocks jump after strong results from D-Wave Quantum (QBTS:NYSE) - Seeking Alpha - May 11th, 2025 [May 11th, 2025]
- Listen to the worlds first song made by a quantum computer and AI - The Next Web - May 10th, 2025 [May 10th, 2025]
- Preparing for post-quantum computing will be more difficult than the millennium bug - Computer Weekly - May 10th, 2025 [May 10th, 2025]
- First-ever silicon-based quantum computer brings scalable quantum power to the masses - The Brighter Side of News - May 10th, 2025 [May 10th, 2025]
- Quantum computer defeats a supercomputer in a very crucial task for the first time - Earth.com - May 10th, 2025 [May 10th, 2025]
- Why the world is now in a race to achieve Quantum Superiority - New York Post - May 5th, 2025 [May 5th, 2025]
- 2 Quantum Computing Stocks to Buy Right Now - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- IBM, Tata Consultancy Services and Government of Andhra Pradesh Unveil Plans to Deploy Indias Largest Quantum Computer in the Countrys First Quantum... - May 5th, 2025 [May 5th, 2025]
- 95% of Organizations Have No Quantum Computing Roadmap - Security Magazine - May 5th, 2025 [May 5th, 2025]
- Prediction: 3 Quantum Computing Stocks That Will Be Worth More Than IonQ 10 Years From Now - Yahoo Finance - May 5th, 2025 [May 5th, 2025]
- R&D Technical Section Q&A: Quantum ComputingAre We Ready? - Society of Petroleum Engineers (SPE) - May 5th, 2025 [May 5th, 2025]
- Tennessee Set to Become First US Quantum Computing, Networking Hub - IoT World Today - May 5th, 2025 [May 5th, 2025]
- 'Qubits For Peace': Researchers Warn Quantum Technology Is Deepening The Global Divide - The Quantum Insider - May 5th, 2025 [May 5th, 2025]
- Down 45%, Should You Buy the Dip on IonQ? - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- Prediction: 3 Quantum Computing Stocks That Will Be Worth More Than IonQ 10 Years From Now - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- Xanadu forges partnerships with US military, industry to fuel quantum computing ambitions - BetaKit - May 5th, 2025 [May 5th, 2025]
- Is IonQ the Best Quantum Computing Stock to Buy Right Now? - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- IBM, TCS team up for Indias most advanced quantum hub - The Economic Times - May 5th, 2025 [May 5th, 2025]
- Quantum-Safe Cryptography: The Time to Start Is Now - GovTech - May 5th, 2025 [May 5th, 2025]
- SA Asks: What are the best quantum computing stocks? (GOOG:NASDAQ) - Seeking Alpha - May 5th, 2025 [May 5th, 2025]
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]