Imperfections Lower the Simulation Cost of Quantum Computers – Physics
November 23, 2020• Physics 13, 183
Classical computers can efficiently simulate the behavior of quantum computers if the quantum computer is imperfect enough.
With a few quantum bits, an ideal quantum computer can process vast amounts of information in a coordinated way, making it significantly more powerful than a classical counterpart. This predicted power increase will be great for users but is bad for physicists trying to simulate on a classical computer how an ideal quantum computer will behave. Now, a trio of researchers has shown that they can substantially reduce the resources needed to do these simulations if the quantum computer is imperfect [1]. The arXiv version of the trios paper is one of the most Scited papers of 2020 and the result generated quite a stir when it first appeared back in FebruaryI overheard it being enthusiastically discussed at the Quantum Optics Conference in Obergurgl, Austria, at the end of that month, back when we could still attend conferences in person.
In 2019, Google claimed to have achieved the quantum computing milestone known as quantum advantage, publishing results showing that their quantum computer Sycamore had performed a calculation that was essentially impossible for a classical one [2]. More specifically, Google claimed that they had completed a three-minute quantum computationwhich involved generating random numbers with Sycamores 53 qubitsthat would take thousands of years on a state-of-the-art classical supercomputer, such as IBMs Summit. IBM quickly countered the claim, arguing that more efficient memory storage would reduce the task time on a classical computer to a couple of days [3]. The claims and counterclaims sparked an industry clash and an intense debate among supporters in the two camps.
Resolving the disparity between these estimates is one of the goals of the new work by Yiqing Zhou, of the University of Illinois at UrbanaChampaign, and her two colleagues [1]. In their study, they focused on algorithms for classically replicating imperfect quantum computers, which are also known as NISQ (noisy intermediate-scale quantum) devices [4]. Todays state-of-the-art quantum computersincluding Sycamoreare NISQ devices. The algorithms the team used are based on so-called tensor network methods, specifically matrix product states (MPS), which are good for simulating noise and so are naturally suited for studying NISQ devices. MPS methods approximate low-entangled quantum states with simpler structures, so they provide a data-compression-like protocol that can make it less computationally expensive to classically simulate imperfect quantum computers (see Viewpoint: Pushing Tensor Networks to the Limit).
Zhou and colleagues first consider a random 1D quantum circuit made of neighboring, interleaved two-qubit gates and single-qubit random unitary operations. The two-qubit gates are either Controlled-NOT gates or Controlled-Z (CZ) gates, which create entanglement. They ran their algorithm for NISQ circuits containing different numbers of qubits, N, and different depths, Da parameter that relates to the number of gates the circuit executes (Fig. 1). They also varied a parameter in the MPS algorithm. is the so-called bond dimension of the MPS and essentially controls how well the MPS capture entanglement between qubits.
The trio demonstrate that they can exactly simulate any imperfect quantum circuit if D and N are small enough and is set to a value within reach of a classical computer. They can do that because shallow quantum circuits can only create a small amount of entanglement, which is fully captured by a moderate . However, as D increases, the team finds that cannot capture all the entanglement. That means that they cannot exactly simulate the system, and errors start to accumulate. The team describes this mismatch between the quantum circuit and their classical simulations using a parameter that they call the two-qubit gate fidelity fn. They find that the fidelity of their simulations slowly drops, bottoming out at an asymptotic value f as D increases. This qualitative behavior persists for different values of N and . Also, while their algorithm does not explicitly account for all the error and decoherence mechanisms in real quantum computers, they show that it does produce quantum states of the same quality (perfection) as the experimental ones.
In light of Googles quantum advantage claims, Zhou and colleagues also apply their algorithm to 2D quantum systemsSycamore is built on a 2D chip. MPS are specifically designed for use in 1D systems, but the team uses well-known techniques to extend their algorithm to small 2D ones. They use their algorithm to simulate an N=54, D=20 circuit, roughly matching the parameters of Sycamore (Sycamore has 54 qubits but one is unusable because of a defect). They replace Googles more entangling iSWAP gates with less entangling CZ gates, which allow them to classically simulate the system up to the same fidelity as reported in Ref. [2] with a single laptop. The simulation cost should increase quadratically for iSWAP-gate circuits, and although the team proposes a method for performing such simulations, they have not yet carried them out because of the large computational cost it entails.
How do these results relate to the quantum advantage claims by Google? As they stand, they do not weaken or refute claimswith just a few more qubits, and an increase in D or f, the next generation of NISQ devices will certainly be much harder to simulate. The results also indicate that the teams algorithm only works if the quantum computer is sufficiently imperfectif it is almost perfect, their algorithm provides no speed up advantage. Finally, the results provide numerical insight into the values of N, D, f, and for which random quantum circuits are confined to a tiny corner of the exponentially large Hilbert space. These values give insight into how to quantify the capabilities of a quantum computer to generate entanglement as a function of f, for example.
So, whats next? One natural question is, Can the approach here be transferred to efficiently simulate other aspects of quantum computing, such as quantum error correction? The circuits the trio considered are essentially random, whereas quantum error correction circuits are more ordered by design [5]. That means that updates to the new algorithm are needed to study such systems. Despite this limitation, the future looks promising for the efficient simulation of imperfect quantum devices [6, 7].
Jordi Tura is an assistant professor at the Lorentz Institute of the University of Leiden, Netherlands. He also leads the institutes Applied Quantum Algorithms group. Tura obtained his B.Sc. degrees in mathematics and telecommunications and his M.Sc. in applied mathematics from the Polytechnic University of Catalonia, Spain. His Ph.D. was awarded by the Institute of Photonic Sciences, Spain. During his postdoctoral stay at the Max Planck Institute of Quantum Optics in Germany, Tura started working in the field of quantum information processing for near-term quantum devices.
A nanopatterned magnetic structure features an unprecedently strong coupling between lattice vibrations and quantized spin waves, which could lead to novel ways of manipulating quantum information. Read More
See the article here:
Imperfections Lower the Simulation Cost of Quantum Computers - Physics
- 2 Pure-Play Quantum Computing Stocks That Can Plunge Up to 62%, According to Select Wall Street Analysts - The Motley Fool - October 13th, 2025 [October 13th, 2025]
- Are we ready for Quantum AI and Australias next cyber war? - The Australian - October 13th, 2025 [October 13th, 2025]
- Infleqtion And Silicon Light Machines Partner To Boost Quantum Computer Performance - Quantum Zeitgeist - October 13th, 2025 [October 13th, 2025]
- Rigetti, IonQ, and Other Quantum Stocks Might Be in a Bubble - Barron's - October 11th, 2025 [October 11th, 2025]
- From artificial atoms to quantum information machines: Inside the 2025 Nobel Prize in physics - The Conversation - October 11th, 2025 [October 11th, 2025]
- Quantum Brilliances Quoll Earns TIME Recognition as One of the Best Inventions of 2025 - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- Researchers Propose Realizing (mostly) Quantum-autonomous Gates on Three Platforms, Reducing Reliance on Time-dependent Control - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- The Next Big Theme: Positioning For Early Growth In Quantum Computing - Seeking Alpha - October 11th, 2025 [October 11th, 2025]
- If You Own Quantum Computing Stocks IonQ, Rigetti, or D-Wave, the Time to Be Fearful When Others Are Greedy Has Arrived - Nasdaq - October 11th, 2025 [October 11th, 2025]
- Quantum LDPC Codes Achieve Single-Shot Universality Via Code-Switching for Fault-Tolerant Computation - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Quantum Advantage from Sampling Shallow Circuits Achieves Distance of from Classical Simulations - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Quantum breakthrough in digital security: How Indian researchers achieved this, significance - The Indian Express - October 11th, 2025 [October 11th, 2025]
- Quantum memory may be closer to reality thanks to this new router - Earth.com - October 11th, 2025 [October 11th, 2025]
- IQC faculty secure more than $1 million in federal funding - University of Waterloo - October 11th, 2025 [October 11th, 2025]
- Infleqtion and Silicon Light Machines Partner to Boost Quantum Computer Performance - Yahoo Finance - October 11th, 2025 [October 11th, 2025]
- Infleqtion and Silicon Light Machines Partner to Boost Quantum Computer Performance - The Quantum Insider - October 11th, 2025 [October 11th, 2025]
- Quantum Computer Security: Protecting Systems from Attacks in the Age of Cloud-Based Processors - Quantum Zeitgeist - October 11th, 2025 [October 11th, 2025]
- Michel Devoret, 2025 Physics Nobel laureate: 'I thought it was a prank. The quantum computer is not here yet' - Le Monde.fr - October 11th, 2025 [October 11th, 2025]
- Fields medalist: As of today we have no quantum computer. It does not exist. - Network World - October 9th, 2025 [October 9th, 2025]
- 3 Quantum Computing Stocks That Could Make a Millionaire - Yahoo Finance - October 9th, 2025 [October 9th, 2025]
- Discoveries behind quantum computers win the Nobel Prize in physics - Science News Explores - October 9th, 2025 [October 9th, 2025]
- Discoveries that enabled quantum computers win the Nobel Prize in physics - Science News - October 9th, 2025 [October 9th, 2025]
- Library exhibit marks 100 years since quantum theory revolution - northernstar.info - October 9th, 2025 [October 9th, 2025]
- Harvard team builds quantum computer that runs continuously for over two hours - Digital Watch Observatory - October 9th, 2025 [October 9th, 2025]
- Trio win Nobel prize for revealing quantum physics in action - Reuters - October 9th, 2025 [October 9th, 2025]
- Advances in quantum error correction showcased at Q2B25 - Physics World - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in physics awarded to 3 University of California faculty - University of California - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in Physics goes to early research that led to todays quantum computers - The Verge - October 9th, 2025 [October 9th, 2025]
- Nobel in physics awarded to scientists showing quantum mechanics on macro scale - The Washington Post - October 9th, 2025 [October 9th, 2025]
- 3 scientists at US universities win Nobel Prize in physics for advancing quantum technology - ABC7 Los Angeles - October 9th, 2025 [October 9th, 2025]
- Nobel Prize in physics goes to three scientists who discovered bizarre quantum effect on large scales - Live Science - October 9th, 2025 [October 9th, 2025]
- Trio who made foundational quantum computing discovery bag Nobel physics prize - theregister.com - October 9th, 2025 [October 9th, 2025]
- Clarke, Devoret, and Martinis Awarded Nobel Prize in Physics for Macroscopic Quantum Discoveries - Quantum Computing Report - October 9th, 2025 [October 9th, 2025]
- Macroscopic quantum tunneling wins 2025s Nobel Prize in physics - Big Think - October 9th, 2025 [October 9th, 2025]
- The time to invest in quantum is now - PwC - October 7th, 2025 [October 7th, 2025]
- Nokia bets on sovereign quantum-safe connectivity - Light Reading - October 7th, 2025 [October 7th, 2025]
- ChattState and UTC Partner With Chattanooga Quantum Collaborative on $1.33M NSF Grant to Protect the Nations Power Grid + Build Quantum Workforce... - October 7th, 2025 [October 7th, 2025]
- Rigetti Computing: I Caught The Falling Knife, And My Hand Never Felt Better! (RGTI) - Seeking Alpha - October 7th, 2025 [October 7th, 2025]
- Quantum Computing Inc. Announces $750 Million Oversubscribed Private Placement of Common Stock Priced at the Market Under Nasdaq Rules - The Quantum... - October 7th, 2025 [October 7th, 2025]
- Investing in Quantum Computing: How IONQ, QUBT, RGTI & QBTS Stocks Are Revolutionizing Technology and Climate Solutions - CarbonCredits.com - October 7th, 2025 [October 7th, 2025]
- Quantum City to Host Annual Summit to Tackle Tech Adoption in a Changing World - The Quantum Insider - October 7th, 2025 [October 7th, 2025]
- D-Wave Quantum (QBTS) Soars to New High on Real-World Quantum Computer Significance - MSN - October 7th, 2025 [October 7th, 2025]
- Rigettis $13 Billion Quantum Leap Stock Hits Record High on Big Deals, But Is the Hype Real? - ts2.tech - October 7th, 2025 [October 7th, 2025]
- Invest in quantum adoption now to be a winner in the quantum revolution - Data Center Dynamics - October 7th, 2025 [October 7th, 2025]
- Quantum Stocks Are Surging: Time to Load Up on D-Wave, or Is IonQ the Safer Bet? - 24/7 Wall St. - October 7th, 2025 [October 7th, 2025]
- Quantum Leap or Speculative Bubble? Wall Street Bets Big on the Future of Computing - FinancialContent - October 7th, 2025 [October 7th, 2025]
- Quantum and Semiconductor Stocks: Future Investment Opportunities - - October 7th, 2025 [October 7th, 2025]
- Were scaling quantum computing even faster with Atlantic Quantum. - The Keyword - October 4th, 2025 [October 4th, 2025]
- Investing in These 3 Quantum Computing Stocks Could Be a Once-in-a-Lifetime Opportunity - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- Quantum Computing Stock Could Rise 67%, Says Analyst. Heres Why. - Barron's - October 4th, 2025 [October 4th, 2025]
- Harvard researchers hail quantum computing breakthrough with machine that can run for two hours atomic loss quashed by experimental design, systems... - October 4th, 2025 [October 4th, 2025]
- Groundbreaking of Illinois Quantum and Microelectronics Park creates anchor for quantum innovation - University of Chicago News - October 4th, 2025 [October 4th, 2025]
- IonQ Hit Major Quantum Computer Milestone Earlier Than ExpectedTime to Buy? - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- Is quantum computing poised for another breakthrough? - IT Brew - October 4th, 2025 [October 4th, 2025]
- Rigetti Computing (RGTI): Can This Top Quantum Computing Stock 3X in 3 Years? - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- Investing in These 3 Quantum Computing Stocks Could Be a Once-in-a-Lifetime Opportunity - The Motley Fool - October 4th, 2025 [October 4th, 2025]
- 3 Quantum Computing Stocks with Potential to Beat the Market 10/3/2025 - TipRanks - October 4th, 2025 [October 4th, 2025]
- Billionaires Are Piling Into a Quantum Computing Stock That Gained Over 3,700% in the Past Year - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- Rigetti Computing (RGTI): Can This Top Quantum Computing Stock 3X in 3 Years? - AOL.com - October 4th, 2025 [October 4th, 2025]
- Rigetti, D-Wave, and other quantum computing stocks are leaping again: How high will they go? - Fast Company - October 4th, 2025 [October 4th, 2025]
- Quantum computing is having a moment in the stock market - MSN - October 4th, 2025 [October 4th, 2025]
- Quantum Computing Stocks: The Next Big Move for D-Wave, IonQ, and Rigetti - 24/7 Wall St. - October 4th, 2025 [October 4th, 2025]
- The Question One Should Always Ask When They Hear a Quantum Advantage Claim - Quantum Computing Report - October 4th, 2025 [October 4th, 2025]
- IBM: Navigating the Hybrid Cloud, AI, and Quantum Frontier (October 2025) - FinancialContent - October 4th, 2025 [October 4th, 2025]
- Quantum Computing (QUBT) Is Down 11.4% After Oversubscribed Funding and New Photonic Tech Debut Whats Changed - Yahoo Finance - October 4th, 2025 [October 4th, 2025]
- DARPA Selects PsiQuantum To Advance To Final Phase Of Quantum Computing Program - Quantum Zeitgeist - October 4th, 2025 [October 4th, 2025]
- 5 Nobel-worthy scientific advances that havent won the prize - Local 3 News - October 4th, 2025 [October 4th, 2025]
- Scientists create the next-generation of secure quantum communication - The Brighter Side of News - October 4th, 2025 [October 4th, 2025]
- Researchers Claim First Unconditional Proof of Quantum Advantage. What Happens Next? - Gizmodo - October 2nd, 2025 [October 2nd, 2025]
- Harvard Researchers Develop First Ever Continuously Operating Quantum Computer - The Harvard Crimson - October 2nd, 2025 [October 2nd, 2025]
- Spooky action at a distance a beginners guide to quantum entanglement and why it matters in the real world - The Conversation - October 2nd, 2025 [October 2nd, 2025]
- Quantum error correction near the coding theoretical bound - Nature - October 2nd, 2025 [October 2nd, 2025]
- Just Out Of The Lab: A Cat Qubit That Jumps Every Hour - Alice & Bob - Quantum Zeitgeist - October 2nd, 2025 [October 2nd, 2025]
- Quantum Brilliance Makes Devices That Keep Their Cool - EE Times - October 2nd, 2025 [October 2nd, 2025]
- PsiQuantum Breaks Ground on Americas Largest Quantum Computing Project in Chicago - Business Wire - October 2nd, 2025 [October 2nd, 2025]
- D-Wave to Participate in Quantum Beach Conference, Highlighting Companys Leadership in the Commercialization of Quantum Computing - The Globe and Mail - October 2nd, 2025 [October 2nd, 2025]
- Post-Quantum Encryption: The VPN Buzzword You Should Actually Care About - PCMag - October 2nd, 2025 [October 2nd, 2025]
- Scientists Say Weve Finally Reached Quantum Supremacy. For Real This Time! - Popular Mechanics - September 30th, 2025 [September 30th, 2025]
- 'A real physical thing': Quantum computer exhibit at O'Hare seeks to make the technology tangible - Phys.org - September 30th, 2025 [September 30th, 2025]
- Quantum chips just proved theyre ready for the real world - ScienceDaily - September 30th, 2025 [September 30th, 2025]