How to introduce quantum computers without slowing economic … – Nature.com
The race is on to develop commercial quantum computers. The breakthroughs they promise new ways of simulating materials, optimizing processes and improving machine learning could transform society, just as todays digital computers have done. But the route to delivering economic benefits is uncertain. The digital revolution took decades and required businesses to replace expensive equipment and completely rethink how they operate. The quantum computing revolution could be much more painful1.
Quantum computers operate in a completely different way from digital computers, and can potentially store and analyse information more efficiently. Digital computers essentially use onoff switches and process binary bits of information (0s and 1s). Quantum computers encode information in the quantum state of atoms, electrons and photons, known as qubits. These qubits can represent many states at once and be combined or entangled, thereby speeding up calculations.
In the long run, businesses adopting quantum computing should have a competitive edge over others. Yet, in the short term, its unclear to what extent the introduction of these machines will prove commercially valuable.
When digital computers started to gain popularity in the 1970s and 1980s, rather than delivering efficiencies, for 15 years they slowed growth in productivity, the value added relative to inputs such as labour, by 0.76 percentage points per annum. Such a dip is known as the productivity paradox. It arose because businesses had to invest in new equipment and learn how to program the devices, as well as work out what to use them for. At first, firms did not invest enough in other innovations that were needed to change core processes and business models2,3. Only after many sectors had adjusted in the 1990s did productivity growth rise again, sharply (see Productivity paradox).
Source: The Conference Board Total Economy Database, 2022
For example, it took a decade of investment, throughout the 1980s, for large firms, such as the retail corporation Walmart, to routinely process data to coordinate planning, and to forecast and replenish their inventory along their supply chains. Walmart gave suppliers access to its sales and inventory data, helping to reduce costs from underproduction or overproduction. The company became able to handle its own distribution and achieve efficiency through economies of scale. All these changes took time and required coordination across many firms2.
We think that the quantum computing revolution could lead to an even more severe and expensive learning curve, for three reasons: high integration costs and few short-term rewards; difficulty in translating quantum concepts for business managers and engineers; and the threat to cryptography posed by quantum computers. As a consequence, assuming that the productivity growth rate slows by 50% more than it did for simpler digital computers, we estimate that the introduction of commercial quantum computers could result in economic losses in gross domestic product (GDP) per capita of approximately US$13,000 over 15 years (based on 2022 levels), or $310 billion per annum in the United States alone.
Fortunately, there are ways to lighten the load and accelerate the benefits to society, three of which we outline here.
Firms might initially adopt quantum computers to solve existing business problems, for which improvements are likely to be incremental. But for more-ambitious uses, the extra costs and likelihood of potential failures might make firms risk-averse. For example, a company that collects vast amounts of data from sensors to inform disaster relief and recovery might look to quantum computers to process information more quickly, to help save lives. But the first such computers might be more prone to faults and errors than are digital ones, with potentially grave consequences for life-critical operations. Such companies might therefore be put off from using quantum computers, until they are more reliable.
These computers will also need to be networked with digital computers, and integrating two such different technologies will be difficult and expensive. Firms will still need digital computers to perform everyday tasks and computations; they will use quantum computers to solve more-complex and specialist problems. Yet, developing hybrid protocols and programs that can work in both situations is much harder than it was to program digital computers in the 1970s.
Hybrid systems will need to be fluent in both digital bits and quantum qubits, and able to encode classical data into quantum states and vice versa. They will need converters to translate digital and analogue signals to transfer information between the two types of processing unit4. Quantum computers are generally large and might need to be cryogenically cooled, making it unlikely that many companies will have a machine of their own. Many will buy services remotely in the cloud through the Internet, for example sourcing extra computing power for simulating materials. Some users, such as traders in financial markets, in which millisecond timing is crucial, might need to host both types of computer.
A chip for quantum computing is tested with a laser at a laboratory of the manufacturing company Q.ANT in Stuttgart, Germany.Credit: Thomas Kienzle/AFP via Getty
To bring firms on board quickly, the commercial advantages will need to be demonstrated in practice. For this, government funding will be needed to attract private investment. We suggest this could be framed as a mission to help companies apply quantum computing to industrial and societal grand challenges. For example, for weather forecasting, quantum systems could analyse huge amounts of data to keep up with rapidly changing conditions. The resilience of the financial system could be improved through better modelling of markets, as would the development of low-carbon technologies to address climate change, such as catalysts for carbon capture or electrolytes for batteries.
Economists will need to devise a framework for evaluating the financial benefits of quantum computing, to encourage firms to invest. Researchers should build proof-of-concept cases, starting by identifying areas in which quantum computers might outperform digital computers for societal grand challenges. Researchers should also set out what firms need to do to adopt quantum technologies, including how they might need to change their business models and practices, as well as working with others along their value chains.
Quantum technologies operate on principles that are often counterintuitive and outside the comfort zone of many engineers and business managers. For example, these technologies work probabilistically and dont seem to obey classical conceptions of cause and effect. According to some schools of thought, in the quantum world, human agency might influence outcomes5, meaning the person operating the computer might need to be considered as part of the system.
And, at present, theres no shared language among scientists, engineers and business managers around quantum computing. Misunderstandings and confusion create delays and therefore further costs. Managers and engineers will need to know enough to be able to select the right class of problems for quantum computers, know what type of information is required to solve them, and prepare data in a quantum-ready format (see go.nature.com/3opfsap).
For example, a delivery logistics company might wish to reschedule its vehicle routes more rapidly to respond better to customer demand for pickups of goods that need returning. Quantum computation could be effective for such replanning which involves solving a complex combinatorial problem in which one change has a knock-on effect on other areas of the business, such as inventory management and financing. But managers would need to be able to spot areas of advantage such as this and know what to do to implement quantum computing solutions.
IBM quantum computer passes calculation milestone
A common semantic and syntactic language for quantum computers needs to be developed. It should be similar to the standardized Unified Modeling Language used for digital computer programming a visual language that helps software developers and engineers to build models to track the steps and actions involved in business processes. Such a tool reduces the costs of software development by making the process intuitive for business managers. Quantum computers also require algorithms and data structures, yet quantum information is much richer than classical information and more challenging to store, transmit and receive6.
A quantum unified modelling language that is similar to the classical one but can also work with quantum information will enable scientists, engineers and managers to stay on the same page while they discuss prototypes, test beds, road maps, simulation models and hybrid information-technology architectures7. Design toolkits that consist of reusable templates and guidelines, containing standard modules for hardware and software development, will allow users to innovate for themselves, shortening development times.
Some of this is beginning to happen. For example, modular workflows are emerging that enable computational chemists and algorithm developers to customize and control chemistry experiments using early versions of quantum computing platforms. A more concerted approach to standardize the language across application areas and hardware platforms is needed to foster commercialization.
Strategies for communicating about quantum computing with the public are also needed, to build trust in these new technologies and ensure that benefits accrue to all parts of society in a responsible manner. Scientists, policymakers and communications specialists should work together to create narratives around the usefulness of quantum technologies. They should focus on practical problems that can be solved rather than tales of weird quantum behaviour.
Although some such initiatives are being set up as part of national quantum programmes, more research is needed to better understand how cognitive biases and ways of learning might influence the adoption of quantum computing. For example, how were cognitive barriers overcome in adopting digital computers and nanotechnologies? Answers to questions such as this will help researchers to develop communication protocols and toolkits.
Quantum computing threatens to break a widely used protocol for encrypting information. Today, sensitive data are typically encrypted by using digital keys in the form of factors for large prime numbers, and sent through fibre-optic cables and other channels as classical bits streams of electrical and optical pulses representing 1s and 0s. The encryption relies on the inability of classical computers to compute the factors for the prime numbers in a reasonable time. However, quantum computers could in principle work out these factors faster and therefore break the encryption.
Are quantum computers about to break online privacy?
Addressing this risk will bring further costs. To protect the security of data and communications, firms will need to invest in new mathematical approaches for encryption, or use quantum-based communications systems, such as quantum key distribution. Quantum key distribution uses qubits sent either through fibre-optic cables or free space (through air, vacuum or outer space), to randomize the generation of keys between the sender and receiver using the probabilistic principles of quantum mechanics. Because of the fragile nature of qubits, if a hacker tries to observe them in transit, the quantum state is affected and the sender and receiver will know that it was tampered with.
Such a threat to sensitive government data and communications8 could also raise geopolitical issues and lead to export controls, such as those imposed by the United States and the Netherlands on microprocessors. The technology bottlenecks for quantum computing are unclear because there are several types of machine that rely on different components and therefore different supply chains. Such restrictions could stifle innovation, increase costs and disrupt the global nature of design, testing and manufacturing processes. Limited exchange of ideas and access to new prototypes would influence the eventual nature of commercial systems and supply chains, as they did for early video cassette recorders reliant on formats such as Betamax and VHS.
Integrating quantum computers and quantum communications technologies across a coordinated network to build a quantum internet9 could overcome this security threat and spur growth across many industries, as the creation of the Internet did. The quantum internet is a network that connects remote quantum devices through a combination of quantum and classical links. This allows distributed quantum computing, in which many devices work together to solve problems, further speeding up computations.
Office workers using computers and telephone headsets in 1965.Credit: Authenticated News/Archive Photos/Getty
The quantum internet could also enable new business models. For example, distributed quantum computers and a process known as blind quantum computing10, which allows fully private computation, could enhance machine learning while preserving proprietary data and guaranteeing that shared data are deleted after computation. Blind quantum computing would, for example, enable data or code from 3D-printing machines at a factory owned by one firm to be shared with machines at another firms factory without either firm seeing the details of the others processes. This would allow the creation and optimization of networks of factories owned by various firms to better cater for changes in product volume. Companies could offer unused 3D-printing production capacity to others, to increase efficiencies, localize production and add flexibility to supply chains.
Researchers need to determine the benefits to customers and firms of sharing data and information with faster computation, enhanced privacy and confidentiality. Would these benefits lead to more products and services that are better tailored to customer needs? What would the impacts be on the wider industrial landscape, and what new business models might emerge?
The promise of quantum computing is great if researchers can help to smooth the path for its implementation.
Visit link:
How to introduce quantum computers without slowing economic ... - Nature.com
- Did the US quantum computer really crack the Bitcoin key and steal $15 billion? - The Globe and Mail - November 24th, 2025 [November 24th, 2025]
- Meet the Genius Quantum Computing Stock Warren Buffett and Berkshire Hathaway Just Bought - Yahoo Finance - November 23rd, 2025 [November 23rd, 2025]
- IBM and Cisco Join Forces to Build a Quantum Internet - TipRanks - November 23rd, 2025 [November 23rd, 2025]
- Institutional Investors Piled Into IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing Inc. Stocks -- and They'll Likely Regret It - Nasdaq - November 23rd, 2025 [November 23rd, 2025]
- World Record Broken: 50-Qubit Quantum Computer Fully Simulated for the First Time - SciTechDaily - November 23rd, 2025 [November 23rd, 2025]
- The Basics Of Using Python For Quantum Computing - Open Source For You - November 23rd, 2025 [November 23rd, 2025]
- Greely grad makes quantum computing discovery - The Portland Press Herald - November 23rd, 2025 [November 23rd, 2025]
- This IBM Engineer Is Pushing Quantum Computing Out of the Lab - IEEE Spectrum - November 23rd, 2025 [November 23rd, 2025]
- NTT and OptQC Sign Collaboration Agreement to Accelerate Scalable and Reliable Optical Quantum Computing Pioneering the Future of Quantum with Optical... - November 23rd, 2025 [November 23rd, 2025]
- 1 Major Red Flag for This Explosive Quantum Computing Stock - The Motley Fool - November 23rd, 2025 [November 23rd, 2025]
- Dream of quantum internet inches closer after breakthrough helps beam information over fiber-optic networks - Live Science - November 23rd, 2025 [November 23rd, 2025]
- Quantum computers that recycle their qubits can limit errors - New Scientist - November 23rd, 2025 [November 23rd, 2025]
- Will Quantum Computing Break Ethereum And Bitcoin Before 2028? We Asked ChatGPT - CCN.com - November 23rd, 2025 [November 23rd, 2025]
- Will IonQ Be a $1 Trillion Company 10 Years From Now? - The Motley Fool - November 23rd, 2025 [November 23rd, 2025]
- Qubits and Healthcare: Quantum Computing Has Arrived in Cleveland - Ideastream - November 23rd, 2025 [November 23rd, 2025]
- IBM and Cisco have a new partnership as they target a quantum-computing internet - MarketWatch - November 23rd, 2025 [November 23rd, 2025]
- YQuantum Receives CHF 150,000 From Venture Kick to Create Scalable Hardware For Quantum Computers - The Quantum Insider - November 23rd, 2025 [November 23rd, 2025]
- SkyWater Technology and Silicon Quantum Computing Team to Advance Hybrid Quantum-Classical Computing - HPCwire - November 23rd, 2025 [November 23rd, 2025]
- Institutional Investors Piled Into IonQ, Rigetti Computing, D-Wave Quantum, and Quantum Computing Inc. Stocks -- and They'll Likely Regret It - Yahoo... - November 23rd, 2025 [November 23rd, 2025]
- D-Wave Quantum's CFO Sold Nearly $5 Million in Company Stock. Is This a Warning Sign for Shareholders? - The Motley Fool - November 23rd, 2025 [November 23rd, 2025]
- D-Wave Quantum's CFO Sold Nearly $5 Million in Company Stock. Is This a Warning Sign for Shareholders? - AOL.com - November 23rd, 2025 [November 23rd, 2025]
- Meet the Genius Quantum Computing Stock Warren Buffett and Berkshire Hathaway Just Bought - The Motley Fool - November 23rd, 2025 [November 23rd, 2025]
- Quantum will push EPB innovation to $10B impact by 2035, study finds - Chattanooga Times Free Press - November 23rd, 2025 [November 23rd, 2025]
- Macrorealism-based Benchmarking Demonstrates Scalable Quantum Computer Testing Via Parity Measurements - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- Symmetry simplifies quantum noise analysis, paving way for better error correction - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- 1 Popular Quantum Computing Stock to Sell Before It Falls 20%, According to a Wall Street Analyst - The Motley Fool - November 23rd, 2025 [November 23rd, 2025]
- Washington has the pieces for a quantum ecosystem. Now the state needs a game plan and money. - GeekWire - November 23rd, 2025 [November 23rd, 2025]
- SkyWater Technology and Silicon Quantum Computing Team to Advance Hybrid Quantum-Classical Computing - The Quantum Insider - November 23rd, 2025 [November 23rd, 2025]
- Palo Alto CEO tips nation-states to weaponize quantum computing by 2029 - theregister.com - November 23rd, 2025 [November 23rd, 2025]
- Watch Beyond AI: Inside the Global Quantum Computer Race - Bloomberg.com - November 18th, 2025 [November 18th, 2025]
- What Quantum Computer Makers Will Be Showing at SC25 - HPCwire - November 18th, 2025 [November 18th, 2025]
- Quantum Computing (QUBT) Stock Surges On Q3 Earnings, Company To Unveil Neurawave Computer This Week - Benzinga - November 18th, 2025 [November 18th, 2025]
- First full simulation of 50-qubit universal quantum computer achieved - Phys.org - November 11th, 2025 [November 11th, 2025]
- D-Wave (NYSE: QBTS) Advantage2TM Quantum Computer Now Available for U.S. Government Applications at Davidson Technologies - TradingView - November 11th, 2025 [November 11th, 2025]
- Superconducting Pairing Correlations Measured on Quantum Computer in Three Regimes of Fermi-Hubbard Models - Quantum Zeitgeist - November 11th, 2025 [November 11th, 2025]
- 'This is easily the most powerful quantum computer on Earth': Scientists unveil Helios, a record-breaking quantum system - Live Science - November 10th, 2025 [November 10th, 2025]
- Helios-1: New quantum computer is on the path to unravelling superconductivity - New Scientist - November 10th, 2025 [November 10th, 2025]
- Princeton puts quantum computing on the fast track with new qubit - Princeton University - November 7th, 2025 [November 7th, 2025]
- Here's How Hot Quantum Stocks Have Been LatelyAnd What to Know About Them - Investopedia - November 7th, 2025 [November 7th, 2025]
- SkyWater Technology and QuamCore Announce Collaboration to Fabricate Digital Superconducting Controller for Scalable Quantum Computing - Business Wire - November 7th, 2025 [November 7th, 2025]
- Quantum computing jolted by DARPA decision on most viable companies - Fast Company - November 7th, 2025 [November 7th, 2025]
- Quantum Could Be Techs Next Big Thing. But for Investors, Its All About Timing. - The Wall Street Journal - November 7th, 2025 [November 7th, 2025]
- Silicon Quantum Computing Selected by DARPA to Advance into 2nd Stage of Quantum Benchmarking Initiative - HPCwire - November 7th, 2025 [November 7th, 2025]
- Beyond the Hype: Quantum Computers Start Solving Real Problems - USC Viterbi School of Engineering - November 7th, 2025 [November 7th, 2025]
- Alumnus, leader in quantum computing to deliver inaugural joint colloquium - W&M News - November 7th, 2025 [November 7th, 2025]
- IBM Advances to Next Phase of DARPA Quantum Benchmarking Initiative - PR Newswire - November 7th, 2025 [November 7th, 2025]
- Universal Coupler Promises to Cut the Costs of Photonic Quantum Computers | Business | Nov 2025 - Photonics Spectra - November 7th, 2025 [November 7th, 2025]
- Atom Computing selected by DARPA for the next stage of exploring near-term utility-scale quantum computing with neutral atoms - PR Newswire - November 7th, 2025 [November 7th, 2025]
- Quantum Computing Explained: Unlocking the Future of Quantum Technology and Its Impact - Tech Times - November 7th, 2025 [November 7th, 2025]
- IBM Gets Selected for Stage B of DARPAs Quantum Computing Initiative - TipRanks - November 7th, 2025 [November 7th, 2025]
- Quantum computing: What's all the hype about? - marketplace.org - November 7th, 2025 [November 7th, 2025]
- Quantum Motion Selected by DARPA for Second Phase of the Quantum Benchmarking Initiative - insidehpc.com - November 7th, 2025 [November 7th, 2025]
- DARPAs Quantum Benchmarking Initiative targets utility-scale quantum by 2033 - TechInformed - November 7th, 2025 [November 7th, 2025]
- This Is the Smartest Stock to Buy to Take Advantage of the Quantum Computing Revolution -- and It Isn't IonQ, Rigetti Computing, or D-Wave Quantum -... - November 7th, 2025 [November 7th, 2025]
- Target This Quantum Computing Stock Before Another Rally - Forbes - November 7th, 2025 [November 7th, 2025]
- Singapores National Quantum Office and Quantinuum Forge Strategic Partnership to Accelerate Quantum Computing - The Quantum Insider - November 7th, 2025 [November 7th, 2025]
- SkyWater partners with QuamCore to advance quantum computing - Evertiq - November 7th, 2025 [November 7th, 2025]
- SkyWater Technology And QuamCore Announce Collaboration to Fabricate Digital Superconducting Controller For Scalable Quantum Computing - The Quantum... - November 7th, 2025 [November 7th, 2025]
- Canadas Nord Quantique Selected for 2nd Phase of DARPA Quantum Benchmarking Initiative - HPCwire - November 7th, 2025 [November 7th, 2025]
- Why People Confuse AI with Quantum Computing and Why You Should Care - Investopedia - November 7th, 2025 [November 7th, 2025]
- Exclusive | The Next Big Quantum Computer Has Arrived - The Wall Street Journal - November 7th, 2025 [November 7th, 2025]
- DARPAs Quantum Benchmarking Initiative (QBI) Advances with Eleven Teams Moving to Stage B - Quantum Computing Report - November 7th, 2025 [November 7th, 2025]
- Behold Helios, the Most Powerful Quantum Computer on the Planet - oodaloop.com - November 7th, 2025 [November 7th, 2025]
- The Next Big Quantum Computer Has Arrived - oodaloop.com - November 7th, 2025 [November 7th, 2025]
- Government showcases UK quantum computing pledge - Computer Weekly - November 7th, 2025 [November 7th, 2025]
- Behold Helios, the Most Powerful Quantum Computer on the Planet - Gizmodo - November 7th, 2025 [November 7th, 2025]
- Quantum Computing Stocks: Q3 Earnings Preview - Investor's Business Daily - November 3rd, 2025 [November 3rd, 2025]
- Quantum computers reveal that the wave function is a real thing - New Scientist - November 3rd, 2025 [November 3rd, 2025]
- You Won't Believe What Elon Musk Just Said About Quantum Computing (Spoiler Alert: It's Good News) - Nasdaq - November 3rd, 2025 [November 3rd, 2025]
- The US government announces strategic 'prosperity deals' with Japan and South Korea to 'drive breakthroughs' in AI, quantum computing, and more - PC... - November 3rd, 2025 [November 3rd, 2025]
- Are Quantum Computing Stocks in a Bubble? - The Motley Fool - November 3rd, 2025 [November 3rd, 2025]
- Quantum technology is coming to the real world - Financial Times - November 3rd, 2025 [November 3rd, 2025]
- The Donald Trump Administration May Want Stakes in Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum -- and That May Be Terrible... - November 3rd, 2025 [November 3rd, 2025]
- IBM Stock Is Outperforming Nvidia's This Year. Are Shares a Buy? - The Motley Fool - November 3rd, 2025 [November 3rd, 2025]
- An Epic Reversal Is Coming for Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum, Based on a Time-Tested Indicator - The Motley... - November 3rd, 2025 [November 3rd, 2025]
- Saturday Citations: Test flight of the X-59; a confounding quantum calculation; the universe is not simulated - Phys.org - November 3rd, 2025 [November 3rd, 2025]
- What will change in 2026? Brazil will have its first quantum computer, coming from China with a US$10 million investment. - CPG Click Petrleo e Gs - November 3rd, 2025 [November 3rd, 2025]
- Cloud platforms keep breaking down, and this time its quantum - Cybernews - November 3rd, 2025 [November 3rd, 2025]
- Time to Invest in Quantum Computing Stocks - Cabot Wealth Network - November 3rd, 2025 [November 3rd, 2025]
- Imperial Researchers Win Top Prizes For Quantum-AI Advances - Quantum Zeitgeist - November 3rd, 2025 [November 3rd, 2025]