How and when quantum computers will improve machine learning? – Medium
The different strategies toward quantum machine learningThey say you should start an article with a cool fancy image. Google 72 qubits chip Sycamore Google
There is a strong hope (and hype) that Quantum Computers will help machine learning in many ways. Research in Quantum Machine Learning (QML) is a very active domain, and many small and noisy quantum computers are now available. Different approaches exist, for both long term and short term, and we may wonder what are their respective hopes and limitations, both in theory and in practice?
It all started in 2009 with the publications of the HHL Algorithm [1] proving an exponential acceleration for matrix multiplication and inversion, which triggered exciting applications in all linear algebra-based science, hence machine learning. Since, many algorithms were proposed to speed up tasks such as classification [2], dimensionality reduction [3], clustering [4], recommendation system [5], neural networks [6], kernel methods [7], SVM [8], reinforcement learning [9], and more generally optimization [10].
These algorithms are what I call Long Term or Algorithmic QML. They are usually carefully detailed, with guarantees that are proven as mathematical theorems. We can (theoretically) know the amount of speedup compared to the classical algorithms they reproduce, which are often polynomial or even exponential, with respect to the number of input data for most of the cases. They come with precise bounds on the results probability, randomness, and accuracy, as usual in computer science research.
While they constitute theoretical proof that a universal and fault-tolerant quantum computer would provide impressive benefits in ML, early warnings [11] showed that some underlying assumptions were very constraining.
These algorithms often require loading the data with a Quantum Random Access Memory, or QRAM [12], a bottleneck part without which exponential speedups are much more complex to obtain. Besides, they sometimes need long quantum circuits and many logical qubits (which, due to error correction, are themselves composed of many more physical qubits), that might not be arriving soon enough.
When exactly? When we will reach the Universal Fault-Tolerant Quantum Computer, predicted by Google in 2029, or by IonQ in only 5 years. More conservative opinion claim this will not happen before 20+ years, and some even say we will never reach that point. Future will tell!
More recently, a mini earthquake amplified by scientific media has cast doubt on the efficiency of Algorithm QML: the so-called dequantization papers [13] that introduced classical algorithms inspired from the quantum ones to obtain similar exponential speedups, in the field of QML at least. This impressive result was then hindered by the fact that the equivalent speedup only concerns the number of data, and comes at a cost of a terrible polynomial slowdown with respect to other parameters for now. This makes these quantum-inspired classical algorithms currently unusable in practice [14].
In the meantime, something very exciting happened: actual quantum computers were built and became accessible. You can play with noisy devices made of 5 to 20 qubits, and soon more. Quite recently Google performed a quantum circuit with 53 qubits [15], the first that could not be efficiently simulable by a classical computer.
Researchers have then been looking at new models that these noisy intermediate scale quantum computers (NISQ) could actually perform [16]. They are all based on the same idea of variational quantum circuits (VQC), inspired by classical machine learning.
The main difference with algorithmic QML is that the circuit is not implementing a known classical ML algorithm. One would simply hope that the chosen circuit will converge to successfully classify data or predict values. For now, there are several types of circuits in the literature [17] and we start to see interesting patterns in the success. The problem itself is often encoded in the loss function we try to decrease: we sum the error made compared to the true values or labels, or compared to the quantum states we aim for, or to the energy levels, and so on, depending on the task. Active research tries to understand why some circuits work better than others on certain tasks, and why quantumness would help.
Another core difference is that many providers [18, 19, 20] allow you to program these VQC so you can play and test them on actual quantum computers!
In recent years, researchers have tried to find use cases where Variational QML would succeed at classical problems, or even outperforms the classical solutions [21, 22]. Some hope that the variational nature of the training confers some resilience to hardware noise. If this happens to be the case, it would be beneficial not to wait for Error Correction models that require many qubits. One would only need Error Mitigation techniques to post-process the measurements.
On the theoretical side, researchers hope that quantum superposition and entangling quantum gates would project data in a much bigger space (the Hilbert Space of n qubits has dimension 2^n) where some classically inaccessible correlations or separations can be done. Said differently, some believe that the quantum model will be more expressive.
It is important to notice that research on Variational QML is less focused on proving computational speedups. The main interest is to reach a more expressive or complex state of information processing. The two approaches are related but they represent two different strategies. Unfortunately, less is proven compared to Algorithmic QML, and we are far from understanding the theoretical reasons that would prove the advantage of these quantum computations.
Of course, due to the limitations of the current quantum devices, experiments are often made on a small number of qubits (4 qubits in the above graph) or on simulators, often ideal or limited to 30+ qubits. It is hard to predict what will happen when the number of qubits will grow.
Despite the excitement, VQC also suffers from theoretical disturbance. It is proven that when the number of qubits or the number of gates becomes too big, the optimization landscape will be flat and hinder the ability to optimize the circuit. Many efforts are made to circumvent this issue, called Barren Plateaus [23], by using specific circuits [24] or smart initialization of the parameters [25].
But Barren Plateaus are not the only caveat. In many optimization methods, one must compute the gradient of a cost function with respect to each parameter. Said differently, we want to know how much the model is improved when I modify each parameter. In classical neural networks, computing the gradients is usually done using backpropagation because we analytically understand the operations. With VQC, operations become too complex, and we cannot access intermediate quantum states (without measuring and therefore destroying them).
The current state-of-the-art solution is called the parameter shift rule [27, 28] and requires to apply the circuit and measure its result 2 times for each parameter. By comparison, in classical deep learning, the network is applied just once forward and once backward to obtain all thousand or millions gradients. Hopefully, we could parallelize the parameter shift rule on many simulators or quantum devices, but this could be limited for a large number of parameters.
Finally, researchers tend to focus more and more on the importance of data loading into a quantum state [29], also called feature map [30]. Without the ideal amplitude encoding obtained with the QRAM, there are doubts that we will be able to load and process high dimensional classical data with an exponential or high polynomial factor. Some hope remains on data independent tasks such as generative models [21, 31] or solving partial differential equations.
Note that the expression Quantum Neural Networks has been used to show the similarities with classical Neural Networks (NN) training. However they are not equivalent, since the VQC dont have the same hidden layers architecture, and neither have natural non linearities, unless a measurement is performed. And theres no simple rule to convert any NN to a VQC or vice versa. Some now prefer to compare VQC to Kernel Methods [30].
We now have a better understanding of the advantages and weaknesses of the two main strategies towards quantum machine learning. Current research is now focused on two aspects:
Finally, and most importantly, improve the quantum devices! We all hope for constant incremental improvements or a paradigm shift in the quality of the qubits, their number, the error correction process, to reach powerful enough machines. Please physicists, can you hurry?
PS: lets not forget to use all this amazing science to do good things that will benefit everyone.
Jonas Landman is a Ph.D. student at the University of Paris under the supervision of Prof. Iordanis Kerenidis. He is Technical Advisor at QC Ware and member of QuantX. He has previously studied at Ecole Polytechnique and UC Berkeley.
Read more:
How and when quantum computers will improve machine learning? - Medium
- The race to perfect the quantum computer is on, and UC is helping America hold its lead - University of California - May 15th, 2025 [May 15th, 2025]
- Keysight Quantum Control System Embedded within Fujitsu and RIKENs World-Leading 256-Qubit Quantum Computer - Morningstar - May 15th, 2025 [May 15th, 2025]
- Keysight Technologies, Inc. Quantum Control System Embedded Within Fujitsu and Riken's 256-Qubit Quantum Computer - marketscreener.com - May 15th, 2025 [May 15th, 2025]
- The Worlds First Song Created by Artificial Intelligence Using a Quantum Computer Is HereIt Sounds Nothing Like What You Expect - The Daily Galaxy - May 11th, 2025 [May 11th, 2025]
- Regulation watch: how governments are dealing with the risks of quantum computing - Strategic Risk Global - May 11th, 2025 [May 11th, 2025]
- The age of the hype cycle: why science needs room to breathe - varsity.co.uk - May 11th, 2025 [May 11th, 2025]
- Quantums Double-Edged Sword: Balancing Risk and Readiness - InformationWeek - May 11th, 2025 [May 11th, 2025]
- The Computational Limit of Life May Be Much Higher Than We Thought - Yahoo - May 11th, 2025 [May 11th, 2025]
- BlackRock beefs up quantum compute threat warnings to Bitcoin investors - dlnews.com - May 11th, 2025 [May 11th, 2025]
- From false alarms to real threats: Protecting cryptography against quantum - cio.com - May 11th, 2025 [May 11th, 2025]
- Boosting quantum error correction using AI - Phys.org - May 11th, 2025 [May 11th, 2025]
- Laws governing finance and investment can help to protect society from dangers of quantum computing, study shows - Phys.org - May 11th, 2025 [May 11th, 2025]
- Quantum computing stocks jump after strong results from D-Wave Quantum (QBTS:NYSE) - Seeking Alpha - May 11th, 2025 [May 11th, 2025]
- Listen to the worlds first song made by a quantum computer and AI - The Next Web - May 10th, 2025 [May 10th, 2025]
- Preparing for post-quantum computing will be more difficult than the millennium bug - Computer Weekly - May 10th, 2025 [May 10th, 2025]
- First-ever silicon-based quantum computer brings scalable quantum power to the masses - The Brighter Side of News - May 10th, 2025 [May 10th, 2025]
- Quantum computer defeats a supercomputer in a very crucial task for the first time - Earth.com - May 10th, 2025 [May 10th, 2025]
- Why the world is now in a race to achieve Quantum Superiority - New York Post - May 5th, 2025 [May 5th, 2025]
- 2 Quantum Computing Stocks to Buy Right Now - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- IBM, Tata Consultancy Services and Government of Andhra Pradesh Unveil Plans to Deploy Indias Largest Quantum Computer in the Countrys First Quantum... - May 5th, 2025 [May 5th, 2025]
- 95% of Organizations Have No Quantum Computing Roadmap - Security Magazine - May 5th, 2025 [May 5th, 2025]
- Prediction: 3 Quantum Computing Stocks That Will Be Worth More Than IonQ 10 Years From Now - Yahoo Finance - May 5th, 2025 [May 5th, 2025]
- R&D Technical Section Q&A: Quantum ComputingAre We Ready? - Society of Petroleum Engineers (SPE) - May 5th, 2025 [May 5th, 2025]
- Tennessee Set to Become First US Quantum Computing, Networking Hub - IoT World Today - May 5th, 2025 [May 5th, 2025]
- 'Qubits For Peace': Researchers Warn Quantum Technology Is Deepening The Global Divide - The Quantum Insider - May 5th, 2025 [May 5th, 2025]
- Down 45%, Should You Buy the Dip on IonQ? - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- Prediction: 3 Quantum Computing Stocks That Will Be Worth More Than IonQ 10 Years From Now - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- Xanadu forges partnerships with US military, industry to fuel quantum computing ambitions - BetaKit - May 5th, 2025 [May 5th, 2025]
- Is IonQ the Best Quantum Computing Stock to Buy Right Now? - The Motley Fool - May 5th, 2025 [May 5th, 2025]
- IBM, TCS team up for Indias most advanced quantum hub - The Economic Times - May 5th, 2025 [May 5th, 2025]
- Quantum-Safe Cryptography: The Time to Start Is Now - GovTech - May 5th, 2025 [May 5th, 2025]
- SA Asks: What are the best quantum computing stocks? (GOOG:NASDAQ) - Seeking Alpha - May 5th, 2025 [May 5th, 2025]
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]