Five Ways QSA is Advancing Quantum Computing Berkeley Lab … – Lawrence Berkeley National Laboratory (.gov)
Quantum 101
Quantum computers harness the laws of physics at the tiniest scales. Classical computers encode information in bits, usually represented as either a 0 or a 1. But quantum computers use quantum bits, or qubits, which can exist in a superposition of states a combination of both 0 and 1 simultaneously. This translates to more computational power.
Quantum information processors are still nascent and fragile, requiring careful setup and controls in specialized labs. To scale up quantum computers so that they can solve big problems, researchers need to advance technologies to support larger numbers of qubits for longer periods of time.
Quantum computers could someday perform certain calculations faster than classical computers, with applications in science, medicine, security, finance, and beyond but first, researchers need to improve the underlying science and technology. Since its launch in 2020, the Quantum Systems Accelerator (QSA) has already made major advances in both hardware and programming, improving the quantum tools that researchers hope will help solve some of humanitys biggest questions.
QSA is one of the Department of Energys five national quantum information science research centers with a focus on all three major technologies for quantum computing: superconducting circuits, trapped-ion systems, and neutral atoms.
We believe there are synergies between these three big technologies and that each one may have unique abilities and applications for solving different kinds of problems, said Rick Muller, the director of QSA and a senior manager at Sandia National Laboratories. By looking at all three of them together, we can more easily find their strengths, apply innovations across technologies, and design a path forward to a universal quantum computer.
Led by Lawrence Berkeley National Laboratory (Berkeley Lab), QSA brings together more than 250 experts from 14 other institutions: Sandia National Laboratories, University of Colorado Boulder, MIT Lincoln Laboratory, Caltech, Duke University, Harvard University, Massachusetts Institute of Technology, Tufts University, UC Berkeley, University of Maryland, University of New Mexico, University of Southern California, University of Texas at Austin, and Canadas Universit de Sherbrooke.
Together, QSA researchers are developing ways to better control qubits (the building blocks of quantum computers), finding algorithms and applications for current and emerging quantum information systems, and speeding their transfer to industry. QSA is also preparing the next generation of quantum scientists through activities, including peer mentoring programs, career fairs, and training for high school students and teachers.
Were catalyzing national leadership in quantum information through co-design of quantum devices, algorithms, and engineering solutions, with the goal of delivering quantum advantage, said Bert de Jong, the deputy director of QSA and a senior scientist at Berkeley Lab. Were advancing imperfect quantum technologies and figuring out how we in academia and the national laboratories working with our partners in industry can start using them today. At the same time, were preparing scientists to use them to solve big science questions.
In March, the Quantum Systems Accelerator issued a full impact report on advances made since the center launched in 2020. Here are five highlights achieved by QSA scientists and partners so far:
QSA researchers from Harvard University and MIT used a special quantum device to observe several exotic states of matter for the first time and studied magnetism at the quantum level. Their findings help explain the physics underlying materials properties and could be used to engineer exotic materials of the future. Their research was performed using a programmable quantum simulator similar to a quantum computer. The team at Harvard built the simulator using hundreds of laser beams known as optical tweezers, arranging 256 ultra-cold rubidium atoms that acted as qubits. By some measures, that makes it the largest programmable quantum processor demonstrated to date. By moving the atoms into shapes such as squares, honeycombs, and triangles, QSA scientists manipulated how the qubits would interact with one another and made important measurements of quantum phases of matter and quantum spin liquids.
One way to build a useful quantum computer is by connecting qubits with superconducting circuits, which can conduct electricity without energy loss when extremely cold. But with every qubit added, engineering the connections and electronics becomes more difficult. You can imagine a group of qubits spread out like a grid on a piece of paper; trying to snake connections to the innermost qubits causes crowding that can degrade the qubits or signals. To address the challenge, scientists at MIT and MIT Lincoln Laboratory are taking inspiration from commercial electronics and investigating qubits with layers. These stacks of electronic chips reroute the connections to attach vertically, as though perpendicular to our grid a kind of 3D integration. The change allows researchers to potentially connect, control, and read larger numbers of qubits. Through funding from QSA and other partners, theyve already built and tested a 2-stack qubit chip (with two layers), and QSA researchers are working on further enhanced versions. This milestone is an important step toward more densely packed qubits that can perform more complex calculations.
This illustration of the quantum sensor shows trapped beryllium ions (red dots) arranged into a 2D crystal. (Credit: S. Burrows/JILA/UC Boulder)
Any study that uses electronics is limited by random variations or noise that can hide the information researchers are searching for. Quantum systems, such as arrays of ultracold atoms, can be used to make extremely precise measurements that are better at picking the signal from the noise. Led by the University of Colorado Boulder, QSA researchers built a quantum sensor from 150 beryllium ions (atoms with an electric charge) arranged in a flat crystal. By using entangled particles, where a change in one immediately impacts the other, the quantum sensor measured electric fields with more than 10 times the sensitivity of any previously demonstrated atomic sensor. Picking up incredibly tiny changes makes such a sensor a powerful tool that could potentially enhance gravitational wave detectors or look for dark matter, one of the biggest mysteries in modern physics.
To improve quantum computers, researchers need a way to find and correct errors, such as a qubit randomly flipping between 0 and 1. Methods such as continuous quantum error correction (CQEC) keep an eye on qubits and look for telltale signs of problems but they too are subject to noise that can hide issues. QSA researchers at UC Berkeley designed a machine learning algorithm that can process the CQEC signals and find errors more accurately than current real-time methods. Because the new algorithm is flexible, learns on the job, and requires small amounts of computing power, it could improve continuous error correction systems and support larger and more stable quantum computers.
Our everyday computers use circuits with logic gates (such as AND, OR, and NOT) to perform operations. Quantum circuits can also use gates as their building blocks but instead of devices like transistors, their gates are made of qubits and interactions between qubits. While one or two entangled qubits can be used for basic operations, linking together many qubits can speed up computations, simplify quantum circuits, and make computers more powerful. QSA researchers led by Duke University developed a new, one-step method of creating these more versatile gates with multiple entangled qubits. Their technique expands logic operations for quantum computers, and includes a particular kind of gate (known as an N-Toffoli gate) that experts predict will be important in quantum adders, multipliers, and other algorithms including ones with applications in cryptography.
# # #
Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 16 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Labs facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energys Office of Science.
DOEs Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.
Read the rest here:
Five Ways QSA is Advancing Quantum Computing Berkeley Lab ... - Lawrence Berkeley National Laboratory (.gov)
- Are We in a Quantum Computing Bubble? - MSN - July 20th, 2025 [July 20th, 2025]
- Quantum computing is so fire No, seriously. BofA says it could be humanity's biggest breakthrough since the discovery of fire - Fortune - July 20th, 2025 [July 20th, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Bitcoin News: How Quantum Computing Threatens the Math Behind Satoshi Nakamoto's Creation - CoinDesk - July 20th, 2025 [July 20th, 2025]
- Should You Invest $1,000 in Quantum Computing Competitor Rigetti Computing? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Google solves septillionyear problem This quantum chip is the end of computers - El Diario 24 - July 20th, 2025 [July 20th, 2025]
- Researchers Push for Open-Source Quantum Tools to Break Critical Industry Bottlenecks - The Quantum Insider - July 20th, 2025 [July 20th, 2025]
- Quantum Leap or Overpriced Hype? D-Wave's $400M Raise and the Future of Quantum Computing - AInvest - July 20th, 2025 [July 20th, 2025]
- Want to Invest in Quantum Computing Without the Crazy Risk? Buy These 3 Stocks. - The Globe and Mail - July 20th, 2025 [July 20th, 2025]
- Quantum computing edges closer to biotech reality in Moderna-IBM pact - R&D World - July 20th, 2025 [July 20th, 2025]
- Scientists achieve 'magic state' quantum computing breakthrough 20 years in the making quantum computers can never be truly useful without it -... - July 20th, 2025 [July 20th, 2025]
- Guest Post -- Practical Quantum Advantage in the Context of Quantum AI: Rise of the Hybrid Systems - The Quantum Insider - July 20th, 2025 [July 20th, 2025]
- Warren Buffett Is Invested in These Three Magnificent Quantum Computing Stocks. Here's the Best of the Bunch. - Yahoo Finance - July 20th, 2025 [July 20th, 2025]
- After Plummeting by 18%, Could This Quantum Computing Stock Stage a Second-Half Comeback? - The Motley Fool - July 20th, 2025 [July 20th, 2025]
- Scientists make 'magic state' breakthrough after 20 years without it, quantum computers can never be truly useful - Live Science - July 18th, 2025 [July 18th, 2025]
- D-Wave Quantum Skyrocketed Today. Is the Stock a Buy? - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- EIFO and the Novo Nordisk Foundation Acquire the Worlds Most Powerful Quantum Computer - Novo Nordisk Fonden - July 18th, 2025 [July 18th, 2025]
- Israel and US to forge $200m tech hub for AI and quantum science development - The Times of Israel - July 18th, 2025 [July 18th, 2025]
- Quantum code breaking? You'd get further with an 8-bit computer, an abacus, and a dog - theregister.com - July 18th, 2025 [July 18th, 2025]
- Is quantum computing the next big thing in stocks? - TheStreet - July 18th, 2025 [July 18th, 2025]
- What to do while pursuing the promise of quantum computing - Brookings - July 18th, 2025 [July 18th, 2025]
- Microsoft and Atom Computing Partner on Level 2 Quantum System for Nordic Users - The Quantum Insider - July 18th, 2025 [July 18th, 2025]
- Progress Toward Practical Areas of Quantum Technology - CSIS | Center for Strategic and International Studies - July 18th, 2025 [July 18th, 2025]
- Hybrid classical and quantum computing for enhanced glioma tumor classification using TCGA data - Nature - July 18th, 2025 [July 18th, 2025]
- Oxford Ionics And Iceberg Quantum Partner to Accelerate Fault-Tolerant Quantum Computing - The Quantum Insider - July 18th, 2025 [July 18th, 2025]
- Are We Truly Prepared for the Era of Quantum Computing? - Security Boulevard - July 18th, 2025 [July 18th, 2025]
- New quantum computer with great potential to boost Nordic research and innovation - Novo Nordisk Fonden - July 18th, 2025 [July 18th, 2025]
- Launching a Quantum Computer, Photonics Meets Electronics in a First-of-its-Kind Chip - Photonics Spectra - July 18th, 2025 [July 18th, 2025]
- Huge investment to build in Denmark the first level-2 quantum computer - The Copenhagen Post - July 18th, 2025 [July 18th, 2025]
- D-Wave Quantum Skyrocketed Today. Is the Stock a Buy? - The Motley Fool - July 18th, 2025 [July 18th, 2025]
- Oxford Ionics and Iceberg Quantum Partner to Design Fault-Tolerant Quantum Architecture - Quantum Computing Report - July 18th, 2025 [July 18th, 2025]
- Cornell And IBM Demonstrate Error-Resistant Quantum Computing Advance - Quantum Zeitgeist - July 18th, 2025 [July 18th, 2025]
- Quobly and Inria Partner to Advance Scalable, Sovereign Quantum Systems in France - Quantum Computing Report - July 18th, 2025 [July 18th, 2025]
- How IBM and Moderna (MRNA) Are Using Quantum Computing to Design Vaccines Faster - TipRanks - July 18th, 2025 [July 18th, 2025]
- Why D-Wave Quantum Stock Skyrocketed 74.3% in the First Half of 2025 -- and What Comes Next - The Motley Fool - July 18th, 2025 [July 18th, 2025]
- D-Wave Quantum Skyrocketed Today. Is the Stock a Buy? - Nasdaq - July 18th, 2025 [July 18th, 2025]
- IBM and Moderna Team Up on Quantum Study. What It Means for the World of Medicine. - Barron's - July 18th, 2025 [July 18th, 2025]
- Silicon Spin Qubits: Scaling Toward the Million-Qubit Era - EE Times Europe - July 18th, 2025 [July 18th, 2025]
- Why D-Wave Quantum Stock Skyrocketed 74.3% in the First Half of 2025 -- and What Comes Next - The Globe and Mail - July 18th, 2025 [July 18th, 2025]
- Universal Quantum and TUHH Partner on Scalable Quantum Software for 100 000-Qubit Machines - The Quantum Insider - July 16th, 2025 [July 16th, 2025]
- IonQ, D-Wave, and Rigetti Face Off Ahead of Earnings Whos Nearest to Commercial Breakthrough? - TipRanks - July 16th, 2025 [July 16th, 2025]
- Granite Geek: As quantum mechanics turns 100, it is sneaking into everyday life - Monadnock Ledger-Transcript - July 16th, 2025 [July 16th, 2025]
- The rise of women in quantum science in India and the legacy of Satyendra Nath Bose - Physics World - July 16th, 2025 [July 16th, 2025]
- BDx and Anyon launch hybrid quantum AI testbed in Singapore - Light Reading - July 16th, 2025 [July 16th, 2025]
- What Is RSA Encryption, And Did China Really Break It? - SlashGear - July 14th, 2025 [July 14th, 2025]
- D-Wave Quantum (QBTS) Loses 11.8% as 2 Tech Giants Could Threaten its Competitive Edge - MSN - July 14th, 2025 [July 14th, 2025]
- Cracking the quantum code: light and glass are set to transform computing - Cyprus Mail - July 14th, 2025 [July 14th, 2025]
- Revolutionary Quantum-AI Drone Tech Transforms Military Defense and Weather Forecasting - Stock Titan - July 12th, 2025 [July 12th, 2025]
- How Post-Quantum Cryptography Affects Security and Encryption Algorithms - Cisco Blogs - July 12th, 2025 [July 12th, 2025]
- QUANTUM COMPUTING INVESTIGATION INITIATED BY FORMER LOUISIANA ATTORNEY GENERAL: Kahn Swick & Foti, LLC Investigates the Officers and Directors of... - July 12th, 2025 [July 12th, 2025]
- TRIUMF, Perimeter Institute, and D-Wave Collaborate on Quantum-AI for Particle Physics Simulation - Quantum Computing Report - July 12th, 2025 [July 12th, 2025]
- The next leap for the technology sector: quantum computing - TechRadar - July 12th, 2025 [July 12th, 2025]
- Forget ransomware - most firms think quantum computing is the biggest security risk to come - MSN - July 12th, 2025 [July 12th, 2025]
- Quantum Computers Could Break Encryption : Are We Ready for the Digital Apocalypse? - Geeky Gadgets - July 12th, 2025 [July 12th, 2025]
- Texas wants to lead in the next big thing in computing. But is it too late? - Austin American-Statesman - July 12th, 2025 [July 12th, 2025]
- Post-quantum cryptographic inventory the latest PQC buzzword and why you need to know it - Cybernews - July 12th, 2025 [July 12th, 2025]
- Billionaires Are Buying This Quantum Computing Stock Hand Over Fist (Hint: It's Not IonQ or D-Wave Quantum) - Yahoo Finance - July 10th, 2025 [July 10th, 2025]
- Is Rigetti Computing the Top Quantum Computing Stock for the Second Half of 2025? - Nasdaq - July 10th, 2025 [July 10th, 2025]
- CHAMP-ION Project: Why Europe Isnt Backing Down in the Quantum Computer Race - embedded.com - July 10th, 2025 [July 10th, 2025]
- Tiny quantum drumhead sends sound with 1-in-a-million losspoised to rewrite tech - ScienceDaily - July 10th, 2025 [July 10th, 2025]
- The Q-Day Countdown: What It Is and Why You Should Care - Security Boulevard - July 10th, 2025 [July 10th, 2025]
- Finland breaks quantum record with 1-millisecond qubit coherence - Interesting Engineering - July 10th, 2025 [July 10th, 2025]
- Quantum Breakthrough: Qubit Coherence Hits Record Millisecond Milestone - The Debrief - July 10th, 2025 [July 10th, 2025]
- Japan needs to take the quantum-technology leap - The Japan Times - July 10th, 2025 [July 10th, 2025]
- NPL quantum circuits imaging could unlock stable quantum computers - Innovation News Network - July 8th, 2025 [July 8th, 2025]
- Should You Buy Rigetti Computing Stock for Less Than $15? - The Motley Fool - July 8th, 2025 [July 8th, 2025]
- Individual defects in superconducting quantum circuits imaged for the first time - Phys.org - July 8th, 2025 [July 8th, 2025]
- What's the Story? Quantum computing meets telecom - Light Reading - July 8th, 2025 [July 8th, 2025]
- Photonic powerhouse: Light is driving the quantum revolution - Laser Focus World - July 8th, 2025 [July 8th, 2025]
- Quantum Computers Pose Long-Term Threat to Bitcoin Security - AInvest - July 8th, 2025 [July 8th, 2025]
- Quantum Computing 'Q-Day' Threatens Bitcoin (BTC) & Ethereum (ETH) as Singapore Tightens Crypto Regulations - Blockchain News - July 8th, 2025 [July 8th, 2025]
- 2 Top Quantum Computing Stocks to Buy in July - Yahoo Finance - July 6th, 2025 [July 6th, 2025]
- Cracking the quantum code: light and glass are set to transform computing - ScienceBlog.com - July 6th, 2025 [July 6th, 2025]
- Helgoland 2025: the inside story of what happened on the quantum island - Physics World - July 6th, 2025 [July 6th, 2025]
- A shortcut to quantum randomness: Hacked qubit blocks achieve the unexpected - Interesting Engineering - July 6th, 2025 [July 6th, 2025]
- Physicists use 5,564-qubit quantum computer to model the death of our universe - The Brighter Side of News - July 6th, 2025 [July 6th, 2025]
- Small, room-temperature quantum computers that use light on the horizon after breakthrough, scientists say - Live Science - July 4th, 2025 [July 4th, 2025]
- Quantum computers are surprisingly random but that's a good thing - New Scientist - July 4th, 2025 [July 4th, 2025]
- Quantum computers could bring lost Bitcoin back to life: Heres how - Cointelegraph - July 4th, 2025 [July 4th, 2025]
- The Quantum Computing Industry Is Crowded. Why D-Wave, IonQ, and Rigetti Are a Buy. - Barron's - July 4th, 2025 [July 4th, 2025]