Confused by quantum computing? Students are developing a … – University of Arizona News
By Kylianne Chadwick, NASA Space Grant Science Writing Intern, University Communications
Wednesday
This spring, "Ant-Man and the Wasp: Quantumania" premiered in movie theaters across the U.S. The movie depicts a "quantum realm" a world among subatomic particles. While the ideas in the movie differ greatly from the current scientific consensus of the quantum world, applications of quantum mechanics aren't just fantasy; physicists around the globe are applying quantum principles to create powerful quantum computers that outperform conventional computers.
Quantum computers hold the promise of revolutionizing computing. Unlike conventional computers, they take advantage of quantum-mechanical effects that seem to fly in the face of how humans typically experience the world. Because quantum computers follow an entirely different set of rules than traditional computers, they can solve certain problems exponentially faster.
University of Arizona students have developed a computer game to make complex quantum computation concepts easier to grasp. The game challenges users to arrange puzzle pieces into a shape that models a quantum computing circuit. The game was designed to teach students, and even quantum researchers, an unconventional model of quantum computation.
Ashlesha Patil a doctoral student in University of Arizona Wyant College of Optical Sciences and the university-housed, National Science Foundation-funded Center for Quantum Networks presented the puzzle project at a virtual meeting of the American Physical Society on March 22. The project was done under the mentorship of Center for Quantum Networks director Saikat Guha, who is a professor in the Wyant College of Optical Sciences, and Don Towsley, a professor at the University of Massachusetts Amherst.
Patil relates the game to tangram, a puzzle game that was invented in China in the late 1700s. This game includes seven puzzle pieces, each a particular geometric shape and size. Even with just seven pieces, there are more than 1 billion possible ways the pieces can be arranged.
"Our game is much like tangram because the players are challenged to arrange colored blocks on a grid," Patil said. "The game isn't exactly 'real' quantum computation, but rather an educational tool to teach students and even scientists an unconventional, measurement-based way of mapping quantum circuits."
Patil and her teammate Yosef Jacobson, an undergraduate double majoring in computer science and game design and development, have almost wrapped up the development phase of the computer game. They are awaiting minor cosmetic changes before the game will be tested by a broad range of users. The current version is designed to educate students in middle school and high school, and Patil believes that the game could help prepare the upcoming generation to build and optimize quantum computers.
"The quantum information industry is growing and needs a workforce that is trained in quantum theory," Patil said, adding that quantum computers have the potential to model atoms and molecules in ways that are immensely useful for several applications, including new types of drugs, batteries, fertilizers and energy sources.
"Even if a player doesn't end up in a career related to quantum computation, we hope this game might inspire them to go into a STEM-related field," Patil said. "Our hope is that this game could generate excitement about science, in general, with young students."
Conventional computers rely on electrical charges to encode information typically represented by ones and zeroes, which in turn encode bits. Quantum computers, on the other hand, use quantum bits, or "qubits," which can assume a state of both zero and one simultaneously until the state is actually measured, a property called superposition. Because of this, groups of qubits can represent vastly more combinations than classic computer bits.
The states of bits and qubits can be changed by hardware called "gates." All digital devices use gates in their computer circuits.
"A classical computer uses gates, such as the NOT gate, which converts a zero bit into a one bit," Patil explained. "Similarly, there are quantum gates that act on single or multiple qubits simultaneously to change their state, which are represented by the puzzle pieces in our game."
Whether players are aware of it or not, they are modeling a quantum circuit as they drag and drop colored blocks quantum gates onto the game grid, with each horizontal line on the grid representing a qubit. Each round, a random quantum circuit is generated, and the user is prompted to arrange the gates for that quantum circuit while following specific rules. These rules are governed by a measurement-based model of quantum computation, abbreviated as MBQC.
"One way to implement this game is to let students have fun with the game first, then explain what they actually accomplished later," Patil said. "In this way, even young students can gain a more intuitive understanding of the model without having to know all the technical details."
The goal of the game, which is played by one player at a time, is to cover the least possible amount of area when aligning the puzzle blocks or quantum gates. If the player successfully solves the circuit, they are given a score based on how "tightly" they were able to pack the blocks and therefore solve the puzzle.
The game is based off the MBQC model, which takes into account another quirk of the quantum world that is extremely difficult to reconcile with our everyday experience: entanglement.
"Entanglement is a quantum phenomenon in which particles are 'connected,' even across vast distances," Patil said. "This means that a certain physical property of the particles is completely correlated so that if you measure the physical property of one particle, you can determine the property of the other particle."
To perform computation using the MBQC model, researchers initially prepare multiple qubits that are already locked in an entangled state. They then work backward by using the measurements, or whether the qubit ends up as a zero or one, on the entangled qubits to implement gates.
"MBQC is not a very intuitive model because it differs greatly from the way we understand classical computers," Patil said. "Even scientists in the quantum research community are less familiar with it, and that's why we developed this game."
Conventionally, researchers focus on gates when depicting quantum computation in a different model called the circuit model. This method closely relates to classical computers.
"Our game takes the intuitive part of a classic circuit model gates and maps them into puzzle blocks that signify measurements in the MBQC model," Patil said. "This reduces some of the confusion that comes with understanding MBQC measurements, making the model easier to grasp."
Like the centuries-old tangram, the student-developed computer game holds numerous possibilities.
"An optimal mapping of a quantum circuit to measurement-based quantum computation is an open problem that has not been completely solved," Patil said. "We're still figuring out the best way to 'pack' the puzzle blocks the most efficient way for real quantum circuits. Especially when there are many qubits, things get complicated."
The game project was funded by an engineering workforce development fellowship that Patil received from the Center for Quantum Networks, or CQN. UArizona was awarded $26 million under the National Science Foundation's Engineering Research Center program in September 2020 to establish the center, which is also supported by the Department of Energy.
CQN is laying the technical foundations of the first U.S.-based quantum network that can distribute quantum information at high speeds, over long distances. Along with these technological goals, the center prioritizes community-based outreach to students, offering them opportunities in quantum research.
"Our outreach focuses mostly on the lower income areas of Arizona where the students have never met scientists before," Patil said. "As you can imagine, the students get very excited to see the scientists from CQN."
Once the computer game is finished, Patil hopes it will be included in outreach efforts and eventually reach students in classrooms around the nation.
See the original post here:
Confused by quantum computing? Students are developing a ... - University of Arizona News
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]