Better Qubits: Quantum Breakthroughs Powered by Silicon Carbide – SciTechDaily
By U.S. Department of Energy June 14, 2024
Artists representation of the formation pathway of vacancy complexes for spin-based qubits in the silicon carbide host lattice and to the right the associated energy landscape. Credit: University of Chicago
Quantum computers, leveraging the unique properties of qubits, outperform classical systems by simultaneously existing in multiple states. Focused research on silicon carbide aims to optimize qubits for scalable application, with studies revealing new methods to control and enhance their performance. This could lead to breakthroughs in large-scale quantum computing and sensor technologies.
While conventional computers use classical bits for calculations, quantum computers use quantum bits, or qubits, instead. While classical bits can have the values 0 or 1, qubits can exist in a mix of probabilities of both values at the same time. This makes quantum computing extremely powerful for problems conventional computers arent good at solving. To build large-scale quantum computers, researchers need to understand how to create and control materials that are suitable for industrial-scale manufacturing.
Semiconductors are very promising qubit materials. Semiconductors already make up the computer chips in cell phones, computers, medical equipment, and other applications. Certain types of atomic-scale defects, called vacancies, in the semiconductor silicon carbide (SiC) show promise as qubits. However, scientists have a limited understanding of how to generate and control these defects. By using a combination of atomic-level simulations, researchers were able to track how these vacancies form and behave.
Quantum computing could revolutionize our ability to answer challenging questions. Existing small scale quantum computers have given a glimpse of the technologys power. To build and deploy large-scale quantum computers, researchers need to know how to control qubits made of materials that make technical and economic sense for industry.
The research identified the stability and molecular pathways to create the desired vacancies for qubits and determine their electronic properties.
These advances will help the design and fabrication of spin-based qubits with atomic precision in semiconductor materials, ultimately accelerating the development of next-generation large-scale quantum computers and quantum sensors.
The next technological revolution in quantum information science requires researchers to deploy large-scale quantum computers that ideally can operate at room temperature. The realization and control of qubits in industrially relevant materials is key to achieving this goal.
In the work reported here, researchers studied qubits built from vacancies in silicon carbide (SiC) using various theoretical methods. Until now, researchers knew little about how to control and engineer the selective formation process for the vacancies. The involved barrier energies for vacancy migration and combination pose the most difficult challenges for theory and simulations.
In this study, a combination of state-of-the-art materials simulations and neural-network-based sampling technique led researchers at the Department of Energys (DOE) Midwest Center for Computational Materials (MICCoM) to discover the atomistic generation mechanism of qubits from spin defects in a wide-bandgap semiconductor.
The team showed the generation mechanism of qubits in SiC, a promising semiconductor with long qubit coherence times and all-optical spin initialization and read-out capabilities.
MICCoM is one of the DOE Computational Materials Sciences centers across the country that develops open-source, advanced software tools to help the scientific community model, simulate, and predict the fundamental properties and behavior of functional materials. The researchers involved in this study are from Argonne National Laboratory and the University of Chicago.
Reference: Stability and molecular pathways to the formation of spin defects in silicon carbide by Elizabeth M. Y. Lee, Alvin Yu, Juan J. de Pablo and Giulia Galli, 3 November 2021,Nature Communications. DOI: 10.1038/s41467-021-26419-0
This work was supported by the Department of Energy (DOE) Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and is part of the Basic Energy Sciences Computational Materials Sciences Program in Theoretical Condensed Matter Physics. The computationally demanding simulations used several high-performance computing resources: Bebop in Argonne National Laboratorys Laboratory Computing Resource Center; the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science user facility; and the University of Chicagos Research Computing Center. The team was awarded access to ALCF computing resources through DOEs Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. Additional support was provided by NIH.
Link:
Better Qubits: Quantum Breakthroughs Powered by Silicon Carbide - SciTechDaily
- Bitcoin's Quantum threat is real but distant, says Wall Street analyst as doomsday debate rages on - CoinDesk - February 1st, 2026 [February 1st, 2026]
- 2D discrete time crystals realized on a quantum computer for the first time - Phys.org - February 1st, 2026 [February 1st, 2026]
- QCORE at Montana State University awarded $31.5 million to further quantum research - KBZK News - February 1st, 2026 [February 1st, 2026]
- Unisys Quantum Computing Research on Vehicle Routing Optimization Published in American Institute of Physics Journal - PR Newswire - February 1st, 2026 [February 1st, 2026]
- Dqas Achieves Robust Quantum Computer Vision Against Adversarial Attacks And Noise - Quantum Zeitgeist - February 1st, 2026 [February 1st, 2026]
- World has to do 10 years of quantum migration in next three - The Jerusalem Post - February 1st, 2026 [February 1st, 2026]
- D-Wave Quantum CEO on whats next after the most eventful month in the companys history - Sherwood News - February 1st, 2026 [February 1st, 2026]
- IonQ to Buy SkyWater in $1.8B Deal, Betting on Vertically Integrated U.S. Quantum Chip Foundry - MarketBeat - February 1st, 2026 [February 1st, 2026]
- Optical Cavities with Microlenses Boost the Speed of Quantum Information Retrieval - AZoQuantum - February 1st, 2026 [February 1st, 2026]
- NVIDIA Presses for Quantum Initiative Renewal to Keep Up With Swiftly Emerging Technology - The Quantum Insider - February 1st, 2026 [February 1st, 2026]
- The Quantum Computing Race Intensifies as IBM and Google Battle for Supremacy in Error Correction - WebProNews - February 1st, 2026 [February 1st, 2026]
- Here's what IBM said about quantum computing on its call (IBM:NYSE) - Seeking Alpha - February 1st, 2026 [February 1st, 2026]
- Building the world's first open-source quantum computer - Phys.org - January 22nd, 2026 [January 22nd, 2026]
- Rigetti: Not The Quantum Computing Stock To Own - There Are Better Alternatives - Seeking Alpha - January 22nd, 2026 [January 22nd, 2026]
- IQM and Bechtle to install five-qubit quantum computer at Heilbronn University, Germany - BeBeez International - January 22nd, 2026 [January 22nd, 2026]
- Exclusive from 36Kr: Team with Tsinghua and Harvard Backgrounds Developing Quantum Computers, Revenues Double, Secures Hundreds of Millions in... - January 22nd, 2026 [January 22nd, 2026]
- Quantum error correction with logical qubits - EurekAlert! - January 22nd, 2026 [January 22nd, 2026]
- These 3 Giant Tech Stocks Are Poised for Explosive Quantum Growth - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- The quantum-cryptography cliff: From roadmaps to reality - SC Media - January 22nd, 2026 [January 22nd, 2026]
- MIT Researchers Demonstrate Faster Cooling Method for Chip-Based Trapped-Ion Quantum Systems - The Quantum Insider - January 22nd, 2026 [January 22nd, 2026]
- It started with a cat: How 100 years of quantum weirdness powers todays tech - Texas A&M Stories - January 22nd, 2026 [January 22nd, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - The Motley Fool - January 22nd, 2026 [January 22nd, 2026]
- Network-based Quantum Computing Achieves Distributed Fault-Tolerance with Many Small Nodes - Quantum Zeitgeist - January 22nd, 2026 [January 22nd, 2026]
- RGTI and QUBT: This Analyst Sees the Next Jump in Quantum Stocks - Yahoo Finance - January 22nd, 2026 [January 22nd, 2026]
- Building the worlds first open-source quantum computer - University of Waterloo - January 20th, 2026 [January 20th, 2026]
- The 3 Best Quantum Computing Stocks to Buy for 2026 - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- Safeguard Your WAN from Quantum Computing Threats - Cisco Blogs - January 14th, 2026 [January 14th, 2026]
- PsiQuantum Collaborating with Airbus to Advance Quantum Computing for Aerospace - HPCwire - January 14th, 2026 [January 14th, 2026]
- Putting Quantum Computing to the Test - University of Pittsburgh - January 14th, 2026 [January 14th, 2026]
- Xanadu and Thorlabs Partner to Advance Optical Controls for Photonic Quantum Computing - HPCwire - January 14th, 2026 [January 14th, 2026]
- Why Quantum Computers Are Inherently Reversible (And Why That Matters) - Quantum Zeitgeist - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- BTQ Technologies Added to VanEck Quantum Computing UCITS ETF, Expanding European Access to BTQ Through a Regulated UCITS Wrapper - PR Newswire - January 14th, 2026 [January 14th, 2026]
- Singapore and Japan team up on quantum computing - Computer Weekly - January 14th, 2026 [January 14th, 2026]
- Will Quantum Computing Stocks Become the AI Stocks of 2026? - The Motley Fool - January 14th, 2026 [January 14th, 2026]
- Silicon vibrations add a new twist to dark matter research and quantum computing - The Brighter Side of News - January 14th, 2026 [January 14th, 2026]
- D-Wave Just Got a Formidable Quantum Computing Ally. Should You Buy QBTS Stock Here? - Yahoo Finance - January 14th, 2026 [January 14th, 2026]
- 1 Quantum Computing Stock to Buy that Could Soar in 2026 - AOL.com - January 14th, 2026 [January 14th, 2026]
- Yaqumo Inc. and Entropica Labs Sign MOU, Witnessed by Singapore and Japan Governments, to Accelerate Fault-Tolerant Quantum Computing - The Quantum... - January 14th, 2026 [January 14th, 2026]
- Quantum Advantage Has Likely Been Achieved The Debate Is Over What Counts - The Quantum Insider - January 14th, 2026 [January 14th, 2026]
- Will quantum computing stocks become the AI stocks of 2026? - MSN - January 14th, 2026 [January 14th, 2026]
- Quantum Computing Stocks To Add to Your Watchlist - January 12th - MarketBeat - January 14th, 2026 [January 14th, 2026]
- Quantum computing revives debate over Bitcoins long-term security - Mugglehead Magazine - January 14th, 2026 [January 14th, 2026]
- Quantum AI: Telco's Next Big Thing or Expensive Distraction? - Telecoms - January 14th, 2026 [January 14th, 2026]
- What does a quantum computer sound like? This artist and scientist are about to find out - Financial Times - January 11th, 2026 [January 11th, 2026]
- Bipartisan Sens. Give Quantum Reauthorization Act Another Chance - MeriTalk - January 11th, 2026 [January 11th, 2026]
- 3 Quantum Computing Stocks That Could Make a Millionaire - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Infleqtion and Churchill X Move Forward on SPAC Combination - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- Quantum computing has advantages over traditional, but still in early innings: BMO (IONQ:NYSE) - Seeking Alpha - January 9th, 2026 [January 9th, 2026]
- D-Wave Buys Quantum Circuits in Shift to Higher Gear - EE Times - January 9th, 2026 [January 9th, 2026]
- Beyond the Hype: 5 Reasons Quantum Computing Stocks IonQ, Rigetti Computing, and D-Wave Quantum Can Crash in 2026 - Nasdaq - January 9th, 2026 [January 9th, 2026]
- Quantum neural network may be able to cheat the uncertainty principle - New Scientist - January 9th, 2026 [January 9th, 2026]
- Q&A: What does cybersecurity look like in the quantum age? - Penn State University - January 9th, 2026 [January 9th, 2026]
- D-Wave Demo At CES 2026 And The Energy Efficiency Of Quantum Computing - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Quantum Computers Extract Scattering Phase Shift In One-Dimensional Systems Using Integrated Correlation Functions - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- How John Clarke's Nobel Prize-Winning Research Paved the Way for Quantum Computing - Berkeley Lab News Center (.gov) - January 9th, 2026 [January 9th, 2026]
- Circle Examines How Crypto and Web3 Ecosystems are Preparing Blockchains for the Quantum Era - Crowdfund Insider - January 9th, 2026 [January 9th, 2026]
- The Best Quantum Computing Stock to Buy Hand Over Fist in 2026 - The Motley Fool - January 9th, 2026 [January 9th, 2026]
- Quantum computing is closer than you think - Federal News Network - January 9th, 2026 [January 9th, 2026]
- Quantum computing company D-Wave acquires new tech in major merger - Washington Times - January 9th, 2026 [January 9th, 2026]
- Josephson junctions quantum computing building blocks are possible with only one superconductor, experiment confirms - Technology Org - January 9th, 2026 [January 9th, 2026]
- After a Year of Quantum Awareness, 2026 Becomes the Year of Quantum Security - The Quantum Insider - January 9th, 2026 [January 9th, 2026]
- The best quantum computing stock to buy hand over fist in 2026 - MSN - January 9th, 2026 [January 9th, 2026]
- Google Willow: The secrets of the world's most powerful quantum computer - BBC - January 8th, 2026 [January 8th, 2026]
- D-Wave: Quantums First Real Revenue Winner (NYSE:QBTS) - Seeking Alpha - January 8th, 2026 [January 8th, 2026]
- D-Wave to Buy Quantum Circuits for $550 Million. Useful Computers Are Coming to Market. - Barron's - January 8th, 2026 [January 8th, 2026]
- DARPA seeks universal translator between different kinds of quantum computer - Breaking Defense - January 8th, 2026 [January 8th, 2026]
- Royal Bank, Telus back $130-million financing by quantum developer Photonic - The Globe and Mail - January 8th, 2026 [January 8th, 2026]
- Qubits Can be Cloned: Scientists Discover First Method to Safely Back up Quantum Information - The Quantum Insider - January 8th, 2026 [January 8th, 2026]
- The Smartest Quantum Computing Stock to Buy for 2026 - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- 3 Top Quantum Computing Stocks to Buy in 2026 - The Motley Fool - January 8th, 2026 [January 8th, 2026]
- Fredkin And Toffoli: The Architects Of Reversible Computation - Quantum Zeitgeist - January 8th, 2026 [January 8th, 2026]
- Quantum Resistance LLC on the Future of Digital Security in a World of Emerging Quantum Computing - International Business Times - January 8th, 2026 [January 8th, 2026]
- Moscow State University and Rosatom Test 72-Qubit Neutral-Atom Quantum Prototype - Quantum Computing Report - January 8th, 2026 [January 8th, 2026]
- Prediction: These 4 quantum computing stocks will skyrocket in 2026 - MSN - January 8th, 2026 [January 8th, 2026]
- D-Wave Rises On Quantum First - Yahoo Finance - January 8th, 2026 [January 8th, 2026]
- Are Quantum Computing ETFs the Safest Bet for 10-Year Growth? - Nasdaq - January 8th, 2026 [January 8th, 2026]
- Tech and compliance 2026: What to watch for in AI, cybersecurity and quantum computing - Compliance Week - January 8th, 2026 [January 8th, 2026]
- Using microwave pulses to plug leaks in quantum computers makes them more reliable - Phys.org - December 29th, 2025 [December 29th, 2025]
- 5 Major Quantum Computing Breakthroughs that Shaped 2025 - TipRanks - December 29th, 2025 [December 29th, 2025]