Advancing science: Microsoft and Quantinuum demonstrate the most reliable logical qubits on record with an error rate … – Microsoft
Quantinuum scientists making adjustments to a beam line array used to deliver laser pulses in H-Series quantum computers. Photo courtesy of Quantinuum.
Today signifies a major achievement for the entire quantum ecosystem: Microsoft and Quantinuum demonstrated the most reliable logical qubits on record. By applying Microsofts breakthrough qubit-virtualization system, with error diagnostics and correction, to Quantinuums ion-trap hardware, we ran more than 14,000 individual experiments without a single error. Furthermore, we demonstrated more reliable quantum computation by performing error diagnostics and corrections on logical qubits without destroying them. This finally moves us out of the current noisy intermediate-scale quantum (NISQ) level to Level 2 Resilient quantum computing.
This is a crucial milestone on our path to building a hybrid supercomputing system that can transform research and innovation across many industries. It is made possible by the collective advancement of quantum hardware, qubit virtualization and correction, and hybrid applications that take advantage of the best of AI, supercomputing, and quantum capabilities. With a hybrid supercomputer powered by 100 reliable logical qubits, organizations would start to see scientific advantage, while scaling closer to 1,000 reliable logical qubits would unlock commercial advantage.
Advanced capabilities based on these logical qubits will be available in private preview for Azure Quantum Elements customers in the coming months.
YouTube Video
Click here to load media
Many of the hardest problems facing society, such as reversing climate change, addressing food insecurity and solving the energy crisis, are chemistry and materials science problems. However, the number of possible stable molecules and materials may surpass the number of atoms in the observable universe. Even a billion years of classical computing would be insufficient to explore and evaluate them all.
Thats why the promise of quantum is so appealing. Scaled quantum computers would offer the ability to simulate the interactions of molecules and atoms at the quantum level beyond the reach of classical computers, unlocking solutions that can be a catalyst for positive change in our world. But quantum computing is just one layer for driving these breakthrough insights.
Whether its to supercharge pharma productivity or pioneer the next sustainable battery, accelerating scientific discovery requires a purpose-built, hybrid compute platform. Researchers need access to the right tool at the right stage of their discovery pipeline to efficiently solve every layer of their scientific problem and drive insights into where they matter most. This is what we built with Azure Quantum Elements, empowering organizations to transform research and development with capabilities including screening massive data sets with AI, narrowing down options with high-performance computing (HPC) or improving model accuracy with the power of scaled quantum computing in the future.
We continue to advance the state-of-the-art across all these hybrid technologies for our customers, with todays quantum milestone laying the foundation for useful, reliable and scalable simulations of quantum mechanics.
In an article I wrote on LinkedIn, I used a leaky boat analogy to explain why fidelity and error correction are so important to quantum computing. In short, fidelity is the value we use to measure how reliably a quantum computer can produce a meaningful result. Only with good fidelity will we have a solid foundation to reliably scale a quantum machine that can solve practical, real-world problems.
For years, one approach used to fix this leaky boat has been to increase the number of noisy physical qubits together with techniques to compensate for that noise but falling short of real logical qubits with superior error correction rates. The main shortcoming of most of todays NISQ machines is that the physical qubits are too noisy and error-prone to make robust quantum error correction possible. Our industrys foundational components are not good enough for quantum error correction to work, and its why even larger NISQ systems are not practical for real-world applications.
The task at hand for the entire quantum ecosystem is to increase the fidelity of qubits and enable fault-tolerant quantum computing so that we can use a quantum machine to unlock solutions to previously intractable problems. In short, we need to transition to reliable logical qubits created by combining multiple physical qubits together into logical ones to protect against noise and sustain a long (i.e., resilient) computation. We can only obtain this with careful hardware and software co-design. By having high-quality hardware components and breakthrough error-handling capabilities designed for that machine, we can get better results than any individual component could give us. Today, weve done just that.
Breakthroughs in quantum error correction and fault tolerance are important for realizing the long-term value of quantum computing for scientific discovery and energy security. Results like these enable continued development of quantum computing systems for research and development. Dr. Travis Humble, Director, Quantum Science Center, Oak Ridge National Laboratory
Thats why today is such a historic moment: for the first time on record as an industry, were advancing from Level 1 Foundational to Level 2 Resilient quantum computing. Were now entering the next phase for solving meaningful problems with reliable quantum computers. Our qubit-virtualization system, which filters and corrects errors, combined with Quantinuums hardware demonstrates the largest gap between physical and logical error rates reported to date. This is the first demonstrated system with four logical qubits that improves the logical over the physical error rate by such a large order of magnitude.
As importantly, were also now able to diagnose and correct errors in the logical qubits without destroying them referred to as active syndrome extraction. This represents a huge step forward for the industry as it enables more reliable quantum computation.
With this system, we ran more than 14,000 individual experiments without a single error. You can read more about these results here.
Quantum error correction often seems very theoretical. Whats striking here is the massive contribution Microsofts midstack software for qubit optimization is making to the improved step-down in error rates. Microsoft really is putting theory into practice. Dr. David Shaw, Chief Analyst, Global Quantum Intelligence
Since 2019, Microsoft has been collaborating with Quantinuum to enable quantum developers to write and run their own quantum code on ion-trap qubit technology which includes high-fidelity, full connectivity and mid-circuit measurements. Multiple published benchmark tests recognize Quantinuum as having the best quantum volumes, making them well-positioned to enter Level 2.
Todays results mark a historic achievement and are a wonderful reflection of how this collaboration continues to push the boundaries for the quantum ecosystem. With Microsofts state-of-the-art error correction aligned with the worlds most powerful quantum computer and a fully integrated approach, we are so excited for the next evolution in quantum applications and cant wait to see how our customers and partners will benefit from our solutions especially as we move towards quantum processors at scale. Ilyas Khan, Founder and Chief Product Officer, Quantinuum
Quantinuums hardware performs at physical two-qubit fidelity of 99.8%. This fidelity enables application of our qubit-virtualization system, with diagnostics and error correction, and makes todays announcement possible. This quantum system, with co-innovation from Microsoft and Quantinuum, ushers us into Level 2 Resilient.
At Microsoft, our mission is to empower every individual and organization to achieve more. Weve brought the worlds best NISQ hardware to the cloud with our Azure Quantum platform so our customers can embark on their quantum journey. This is why weve integrated artificial intelligence with quantum computing and cloud HPC in the private preview of Azure Quantum Elements. We used this platform to design and demonstrate an end-to-end workflow that integrates Copilot, Azure compute and a quantum algorithm running on Quantinuum processors to train an AI model for property prediction.
Todays announcement continues this commitment by advancing quantum hardware to Level 2. Advanced capabilities based on these logical qubits will be available in private preview for Azure Quantum Elements in the coming months.
Lastly, we continue to invest heavily in progressing beyond Level 2, scaling to the level of quantum supercomputing. This is why weve been advocating for our topological approach, the feasibility of which our Azure Quantum team has demonstrated. At Level 3, we expect to be able to solve some of our most challenging problems, particularly in fields like chemistry and materials science, unlocking new applications that bring quantum at scale together with the best of classical supercomputing and AI all connected in the Azure Quantum cloud.
We are excited to empower the collective genius and make these breakthroughs accessible to our customers. For more details on how we achieved todays results, explore our technical blog, and register for the upcoming Quantum Innovator Series with Quantinuum.
Tags: AI, Azure Quantum Elements, quantum computing
Read the rest here:
Advancing science: Microsoft and Quantinuum demonstrate the most reliable logical qubits on record with an error rate ... - Microsoft
- D-Wave and Davidson Technologies Near Completion of Quantum Computer - insideHPC - April 27th, 2025 [April 27th, 2025]
- Why startups and tech giants are racing to build a practical quantum computer - CNBC Africa - April 27th, 2025 [April 27th, 2025]
- D-Wave and Davidson Technologies Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - Yahoo Finance - April 25th, 2025 [April 25th, 2025]
- IQM to install Polands first superconducting quantum computer - The Next Web - April 25th, 2025 [April 25th, 2025]
- IQM to Deploy Polands First Superconducting Quantum Computer - Business Wire - April 25th, 2025 [April 25th, 2025]
- Poland installs its first superconducting quantum computer - Tech.eu - April 25th, 2025 [April 25th, 2025]
- A quantum internet is much closer to reality thanks to the world's first operating system for quantum computers - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- D-Wave and Davidson Near Installation Completion of Alabamas First On-Site Annealing Quantum Computer - HPCwire - April 23rd, 2025 [April 23rd, 2025]
- Quantum Computer Breakthrough: Fujitsu and RIKEN Lead the Way - JAPAN Forward - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and RIKEN develop world-leading 256-qubit superconducting quantum computer - Capacity Media - April 23rd, 2025 [April 23rd, 2025]
- 3 Reasons to Buy This Artificial Intelligence (AI) Quantum Computing Stock on the Dip - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New Mexico Wants to Be the Heart of Quantum Computing - WSJ - April 23rd, 2025 [April 23rd, 2025]
- IonQ and Toyota Tsusho Align to Distibute Quantum Computing Solutions Across Japanese Industries - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Where Will Rigetti Computing Be in 10 Years? - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- EeroQ Named The 2025 MSU Startup Of The Year - Yahoo Finance - April 23rd, 2025 [April 23rd, 2025]
- New QPU benchmark will show when quantum computers surpass existing computing capabilities, scientists say - Live Science - April 23rd, 2025 [April 23rd, 2025]
- "We've Reached the Future": Xanadu Unleashes the First Scalable Photonic Quantum Computer, Redefining Tech Boundaries in a $100 Billion Race... - April 23rd, 2025 [April 23rd, 2025]
- Fujitsu and Riken develop world-leading quantum computer - The Japan Times - April 23rd, 2025 [April 23rd, 2025]
- No Killer App Yet? Why Quantum Needs Theorists More Than Ever - The Quantum Insider - April 23rd, 2025 [April 23rd, 2025]
- Rigetti, Riverlane, and NQCC Awarded 3.5M ($4.7M USD) Innovate UK Grant to Advance Real-Time Quantum Error Correction - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- The key to 'cat qubits' 160-times more reliable lies in 'squeezing' them, scientists discover - Live Science - April 23rd, 2025 [April 23rd, 2025]
- The mind-bending innovations that built quantum computing - C&EN - April 23rd, 2025 [April 23rd, 2025]
- Mysterious phenomenon first predicted 50 years ago finally observed, and could give quantum computing a major boost - Live Science - April 23rd, 2025 [April 23rd, 2025]
- Big Tech has officially entered its quantum era here's what it means for the industry - Business Insider - April 23rd, 2025 [April 23rd, 2025]
- This Is My Top Quantum Computing Stock for 2025, and It's Not IonQ or Rigetti Computing - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- How Urgent Is The Quantum Computing Risk Facing Bitcoin? One Team Is Putting 1 BTC Up For Grabs To Find Out - Benzinga - April 23rd, 2025 [April 23rd, 2025]
- Classiq and Wolfram Join CERNs Open Quantum Institute to Advance Hybrid Quantum Optimization for Smart Grids - Quantum Computing Report - April 23rd, 2025 [April 23rd, 2025]
- New quantum breakthrough could transform computing and communication - The Brighter Side of News - April 23rd, 2025 [April 23rd, 2025]
- Benchmarking the performance of quantum computing software for quantum circuit creation, manipulation and compilation - Nature - April 23rd, 2025 [April 23rd, 2025]
- A new hybrid platform for quantum simulation of magnetism - Google Research - April 23rd, 2025 [April 23rd, 2025]
- Why CoreWeave, Quantum Computing, and Digital Turbine Plunged Today - The Motley Fool - April 23rd, 2025 [April 23rd, 2025]
- The race is on for supremacy in quantum computing - The Times - April 23rd, 2025 [April 23rd, 2025]
- Project 11 challenges everyone to crack the Bitcoin key using a quantum computer. The reward is 1 BTC - Crypto News - April 23rd, 2025 [April 23rd, 2025]
- 7 Reasons You Should Care About World Quantum Day - Maryland Today - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - Nasdaq - April 16th, 2025 [April 16th, 2025]
- Quantum utility is at most 10 years away, industry experts believe - The Next Web - April 16th, 2025 [April 16th, 2025]
- We stepped inside IQMs quantum lab to witness a new frontier in computing - The Next Web - April 16th, 2025 [April 16th, 2025]
- Quantum Shift: Rewiring the Tech Landscape - infoq.com - April 16th, 2025 [April 16th, 2025]
- Roadmap for commercial adoption of quantum computing gains clarity - Computer Weekly - April 16th, 2025 [April 16th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now. - The Motley Fool - April 16th, 2025 [April 16th, 2025]
- Quantum walks: What they are and how they can change the world - The Brighter Side of News - April 16th, 2025 [April 16th, 2025]
- A timeline of the most important events in quantum mechanics - New Scientist - April 16th, 2025 [April 16th, 2025]
- Crafting the Quantum Narrative: A How-To for Press Releases - Quantum Computing Report - April 16th, 2025 [April 16th, 2025]
- IonQ signs MOU with Japans G-QuAT to expand access to quantum computing and strengthen APAC collaboration - The Quantum Insider - April 16th, 2025 [April 16th, 2025]
- Preparing for quantum advantage while addressing its unique threat to cybersecurity - SDxCentral - April 16th, 2025 [April 16th, 2025]
- IONQ of the U.S., a leading company in quantum computing, will develop quantum network technology in.. - - April 16th, 2025 [April 16th, 2025]
- Impact of tariffs on tech prices, the promise of quantum computing, and new state historic places - WPR - April 16th, 2025 [April 16th, 2025]
- 1 No-Brainer Quantum Computing Stock Down 60% to Buy on the Dip in 2025 - 24/7 Wall St. - April 16th, 2025 [April 16th, 2025]
- Physicists put Schrdinger's cat in a microwave and the quantum experiment actually worked - Yahoo - April 12th, 2025 [April 12th, 2025]
- A week at Yale devoted to quantum, quantum, and more quantum - Yale News - April 12th, 2025 [April 12th, 2025]
- US military launches initiative to find the best quantum computer - New Scientist - April 12th, 2025 [April 12th, 2025]
- Proving quantum computers have the edge - Phys.org - April 12th, 2025 [April 12th, 2025]
- 3 Quantum Computing Stocks Poised for Explosive Growth - The Motley Fool - April 12th, 2025 [April 12th, 2025]
- DARPA begins scaling a quantum computer with 15 companies - Nextgov - April 12th, 2025 [April 12th, 2025]
- New DARPA Initiative Challenges the Creation of Operational Quantum Computers - AFCEA International - April 12th, 2025 [April 12th, 2025]
- Qolab Spearheads Hardware Development for DARPA's Quantum Benchmarking Initiative - Business Wire - April 12th, 2025 [April 12th, 2025]
- Want to Invest in Quantum Computing? 3 Stocks That Are Great Buys Right Now - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- A Useful Quantum Computer Within 10 Years? DARPA, 2 Australian Startups & More Are Working On It - TechRepublic - April 12th, 2025 [April 12th, 2025]
- Where Schrdingers cat came from and why its getting fatter - New Scientist - April 12th, 2025 [April 12th, 2025]
- Rigetti and IonQ Selected for U.S. Quantum Initiative. Moving From Hype to Prototype. - Barron's - April 12th, 2025 [April 12th, 2025]
- A Tangled Benchmark: Using the Jones Polynomial to Test Quantum Hardware at Scale - The Quantum Insider - April 12th, 2025 [April 12th, 2025]
- The dream of quantum computing is closer than ever | The Excerpt - USA Today - April 12th, 2025 [April 12th, 2025]
- Analysts Still Have a Near-Perfect Rating on This Strong Buy Quantum Computing Stock - The Globe and Mail - April 12th, 2025 [April 12th, 2025]
- Building Indias First Quantum Computer, a Foreign-Returned Physicist Battles the Bureaucracy - outlookbusiness.com - April 12th, 2025 [April 12th, 2025]
- Quantum computing drives innovation in AI and cloud tech - SiliconANGLE - April 12th, 2025 [April 12th, 2025]
- Delfts Quantware paves the way to the million-qubit quantum computer - Bits&Chips - April 8th, 2025 [April 8th, 2025]
- What's Going On With IonQ Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- Quantum computer solves optimization problem at Ford's assembly line - Interesting Engineering - April 1st, 2025 [April 1st, 2025]
- Finnish Quantum Startup IQM in Talks to Raise Over 200 Million - Bloomberg.com - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Approach Generates First Ever Truly Random Number - Discover Magazine - April 1st, 2025 [April 1st, 2025]
- National Quantum Computing Centre Launches Insights Paper Exploring Quantum Computings Transformative Potential in Healthcare and Pharmaceuticals -... - April 1st, 2025 [April 1st, 2025]
- JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory and University of Texas at Austin advance the application of... - April 1st, 2025 [April 1st, 2025]
- Certified randomness using a trapped-ion quantum processor - Nature - April 1st, 2025 [April 1st, 2025]
- What's Going On With Quantum Computing Stock Today? - Benzinga - April 1st, 2025 [April 1st, 2025]
- D-Wave Pushes Back At Critics, Shows Off Aggressive Quantum Roadmap - The Next Platform - April 1st, 2025 [April 1st, 2025]
- Quantum Computing Inc. Secures Quantum Photonic Vibrometer Order with Delft University of Technology - Yahoo Finance - April 1st, 2025 [April 1st, 2025]
- How quantum cybersecurity changes the way you protect data - TechTarget - April 1st, 2025 [April 1st, 2025]
- Pasqal Selected for 140-Qubit Quantum Computer to Be Hosted at CINECA - insideHPC - April 1st, 2025 [April 1st, 2025]
- D-Wave and Japan Tobacco use quantum to build a better AI model for drug discovery - SiliconANGLE - April 1st, 2025 [April 1st, 2025]