Media Search:



How AI is impacting the video game industry – ZME Science

Weve long been used to playing games; artificial intelligence holds the promise of games that play along with us.

Artificial intelligence (AI for short) is undoubtedly one of the hottest topics of the last few years. From facial recognition to high-powered finance applications, it is quickly embedding itself throughout all the layers of our lives, and our societies.

Video gaming, a particularly tech-savvy domain, is no stranger to AI, either. So what can we expect to see in the future?

Maybe one of the most exciting prospects regarding the use of AI in our games is the possibilities it opens up in regards to interactions between the player and the software being played. AI systems can be deployed inside games to study and learn the patterns of individual players, and then deliver a tailored response to improve their experience. In other words, just like youre learning to play against the game, the game may be learning how to play against you.

One telling example is Monoliths use of AI elements in their Middle-Earth series. Dubbed Nemesis AI, this algorithm was designed to allow opponents throughout the game to learn the players particular combat patterns and style, as well as the instances when they fought. These opponents re-appear at various points throughout the game, recounting their encounters with the player and providing more difficult (and, developers hope, more entertaining) fights.

An arguably simpler but not less powerful example of AI in gaming is AI Dungeon: this text-based dungeon adventure uses GPT-3, OpenAIs natural language modeler, to create ongoing narratives for the players to enjoy.

Its easy to let the final product of the video game development process steal the spotlight. And although it all runs seamlessly on screen, there is a lot of work that goes into creating them. Any well-coded and well-thought-out game requires a lot of time, effort, and love to create which, in practical terms, translates into costs.

AI can help in this regard as well. Tools such as procedural generation can help automate some of the more time- and effort-intensive parts of game development, such as asset production. Knowing that more run-of-the-mill processes can be handled well by software helpers can free human artists and developers to focus on more important details of their games.

Automating asset production can also open the way to games that are completely new freshly-generated maps or characters, for example every time you play them.

For now, AI is still limited in the quality of writing it can output, which is definitely a limitation in this regard; after all, great games are always built on great ideas or great narratives.

Better graphics has long been a rallying cry of the gaming industry, and for good reason we all enjoy a good show. But AI can help push the limits of what is possible today in this regard.

For starters, machine learning can be used to develop completely new textures, on the fly, for almost no cost. With enough processing power, it can even be done in real-time, as a player journeys through their digital world. Lighting and reflections can also be handled more realistically and altered to be more fantastic by AI systems than simple scripted code.

Facial expressions are another area where AI can help. With enough data, an automated system can produce and animate very life-like human faces. This would also save us the trouble of recording and storing gigabytes worth of facial animations beforehand.

The most significant potential of AI systems in this area, however, is in interactivity. Although graphics today are quite sophisticated and we do not lack eye candy, interactivity is still limited to what a programmer can anticipate and code. AI systems can learn and adapt to players while they are immersed in the game, opening the way to some truly incredible graphical displays.

AI has already made its way into the world of gaming. The case of Alpha Go and Alpha Zero showcase just how powerful such systems can be in a game. And although video games have seen some AI implementation, there is still a long way to go.

For starters, AIs are only as good as the data you train them with and they need tons and tons of data. The gaming industry needs to produce, source, and store large quantities of reliable data in order to train their AIs before they can be used inside a game. Theres also the question of how exactly to code and train them, and what level of sophistication is best for software that is meant to be playable on most personal computers out there.

With that being said, there is no doubt that AI will continue to be mixed into our video games. Its very likely that in the not-so-distant future, the idea that such a game would not include AI would be considered quite brave and exotic.

See more here:
How AI is impacting the video game industry - ZME Science

Running the international quantum race – Axios

The race for quantum supremacy isn't just between tech companies, but between nation-states as well.

Why it matters: The first country to produce effective, working quantum computers will have a key advantage in economics, defense and cybersecurity and the U.S., China, and Europe are all competing.

What's happening: Last month, the Commerce Department added a dozen Chinese companies to a trade blacklist in an effort to prevent emerging U.S. technologies from being used for quantum computing efforts that would boost Beijing's military.

The big picture: One of the clearest uses of quantum computing is to eventually break the complex mathematical problems used to encrypt information of all kinds on the internet, including sensitive government data.

Between the lines: While U.S. companies generally have the lead on building better quantum computers, China has invested massively in the industry, including an $11 billion national laboratory for quantum information sciences.

What to watch: Progress on American efforts to develop post-quantum cryptography standards that would resist more powerful quantum computers, as well as research from the five new quantum institutes created by the White House last year.

The bottom line: "The economy for the next hundred years will be driven by quantum," says Chapman. "So it's not a game we want to lose."

More:
Running the international quantum race - Axios

Is Taiwan’s Five-year Quantum Computing and Talent Initiative the Wrong Strategy for the Island Nation? – OODA Loop

Ukraine may be the Gray-zone in the headlines right now, but Taiwan is the more significant strategic hybrid warfare battlefield, in no small part due to its global leadership in semiconductor manufacturing. Considering the hype cycle around all things Quantum, you would think it would be positive, sound strategic news that Taiwanese leaders recently announced a strategic initiative focused on quantum computing. The Taiwan News and Focus Taiwan (CNA English News) translations are tough, but here are the basics of the Taiwan Quantum Initiative as reported in Mandarin Chinese by the aforementioned Taiwanese local press outlets:

Already a member?Sign in to your account.

OODA Loop provides actionable intelligence, analysis, and insight on global security, technology, and business issues. Our members are global leaders, technologists, and intelligence and security professionals looking to inform their decision making process to understand and navigate global risks and opportunities.

You can chose to be an OODA Loop Subscriber or an OODA Network Member. Subscribers get access to all site content, while Members get all site content plus additional Member benefits such as participation in our Monthly meetings, exclusive OODA Unlocked Discounts, discounted training and conference attendance, job opportunities, our Weekly Research Report, and other great benefits.

For more information please click here. Thanks!

Already a member?Sign in to your account.

Now more than ever, organizations need to apply rigorous thought to business risks and opportunities. In doing so it is useful to understand the concepts embodied in the terms Black Swan and Gray Rhino. See: Potential Future Opportunities, Risks and Mitigation Strategies in the Age of Continuous Crisis

The OODA leadership and analysts have decades of experience in understanding and mitigating cybersecurity threats and apply this real world practitioner knowledge in our research and reporting. This page on the site is a repository of the best of our actionable research as well as a news stream of our daily reporting on cybersecurity threats and mitigation measures. See:Cybersecurity Sensemaking

OODAs leadership and analysts have decades of direct experience helping organizations improve their ability to make sense of their current environment and assess the best courses of action for success going forward. This includes helping establish competitive intelligence and corporate intelligence capabilities.Our special series on the Intelligent Enterprise highlights research and reports that can accelerate any organization along their journey to optimized intelligence. See: Corporate Sensemaking

This page serves as a dynamic resource for OODA Network members looking for Artificial Intelligence information to drive their decision-making process. This includes a special guide for executives seeking to make the most of AI in their enterprise. See: Artificial Intelligence Sensemaking

From the very beginning of the pandemic we have focused on research on what may come next and what to do about it today. This section of the site captures the best of our reporting plus daily daily intelligence as well as pointers to reputable information from other sites. See: OODA COVID-19 Sensemaking Page.

A dynamic resource for OODA Network members looking for insights into the current and future developments in Space, including a special executives guide to space. See: Space Sensemaking

OODA is one of the few independent research sources with experience in due diligence on quantum computing and quantum security companies and capabilities. Our practitioners lens on insights ensures our research is grounded in reality. See: Quantum Computing Sensemaking.

In 2020, we launched the OODAcast video and podcast series designed to provide you with insightful analysis and intelligence to inform your decision making process. We do this through a series of expert interviews and topical videos highlighting global technologies such as cybersecurity, AI, quantum computing along with discussions on global risk and opportunity issues. See: The OODAcast

More here:
Is Taiwan's Five-year Quantum Computing and Talent Initiative the Wrong Strategy for the Island Nation? - OODA Loop

Lecturer in Computer Science, Quantum Computing job with ROYAL HOLLOWAY, UNIVERSITY OF LONDON | 275274 – Times Higher Education (THE)

Department of Computer Science

Location: EghamSalary: 44,283 to 52,430 per annum - including London AllowancePostType: Full TimeClosingDate: 23.59 hours GMT on Sunday 13 February 2022Reference: 1221-502

Permanent, Full Time (Multiple posts)

The Department of Computer Science at Royal Holloway is looking to appoint multiple academic members of staff to support its research and teaching.

We carry out outstanding research and deliver excellent teaching at both undergraduate and postgraduate level: we ranked 11thin the Research Excellence Framework (REF 2014) for the quality of our research output, and in teaching we are typically in the top 10 in the UK for graduate prospects (e.g., Guardian 2022).

Over the past seven years, we have undertaken an ambitious plan of expansion: eighteen new academic members of staff were appointed, new undergraduate and integrated-masters programmes were created, and multiple new postgraduate-taught programmes were launched. We have strong research groups in the broad areas of Intelligent Systems, Machine Learning, Algorithms and Complexity, and Programming Languages and Systems, as well as good connections with the Information Security Group. We are also involved in multiple inter/multidisciplinary activities, from electrical engineering to psychology and social sciences. Our research strength generates significant interest and collaborative opportunity from universities and third stream partners.

Recently, Royal Holloway launched a research catalyst Advanced Quantum Science and Technologies, with multiple connections to Computer Science, Physics, Mathematics, and the Information Security Group, and the Computer Science department is seeking to strengthen its research activities via increased engagement in the catalyst.

We are therefore recruiting academic members of staff with research expertise in Quantum Computing, to complement and extend the departments research profile. We welcome applicants with expertise in any area of quantum computing, including but not limited to quantum algorithms, quantum information theory, quantum simulation, and potential application areas such as quantum linear algebra and quantum machine learning. We also welcome exceptional candidates from all disciplines in Computer Science, who can contribute to the new catalysts.

The successful candidate will help us seek and seize opportunities for research funding and industrial engagement. They will hold a PhD or equivalent, and will have a proven research record with a solid background in the underlying theory. Experience in attracting funding, engaging with industry, or contributing to outreach activities would also be valuable.

The appointee will be expected to contribute across the full range of departmental activities, including undergraduate and postgraduate teaching and the supervision of mainstream projects over a wide range of topics. In particular, duties and responsibilities of this post include: conducting individual or collaborative research projects; producing high-quality outputs for publication in high-profile journals or conference proceedings; applying for research funding; delivering high-quality teaching to all levels of students; supervising research postgraduate students.

This is a full-time and permanent (tenured) post, available from April 2022or as soon as possible thereafter. The post is based in Egham, Surrey, within commuting distance from London, Europes most dynamic technology hub.

In return we offer a highly competitive rewards and benefits package including:

For further details of the Department seeroyalholloway.ac.uk/computerscienceor contact the Head of Department atMagnus.Wahlstrom@rhul.ac.uk. For further details on the Royal Holloway research catalysts seeintranet.royalholloway.ac.uk/staff/research/research-2021/research-catalysts.aspx

To view further details of this post and to apply please visithttps://jobs.royalholloway.ac.uk.For queries on the application process the Human Resources Department can be contacted by email at:recruitment@rhul.ac.uk

Please quote the reference:1221-502

Closing Date: Midnight, 13thFebruary 2022

Interview Date:W/C 7thMarch 2022

Furtherdetails: JobDescription PersonSpecification

See the article here:
Lecturer in Computer Science, Quantum Computing job with ROYAL HOLLOWAY, UNIVERSITY OF LONDON | 275274 - Times Higher Education (THE)

Atos announces hybridisation projects at its 8th Quantum Advisory Board – Scientific Computing World

At the meeting of the 8th Atos Quantum Advisory Board, a group of international experts, mathematicians and physicists, authorities in their fields, Atos has announced investments, along with partner start-ups Pasqal and IQM, in two major quantum hybridisation projects in France and Germany.

Held at Atos' R&D centre, dedicated to research in quantum computing and high-performance computing, in Clayes-sous-Bois, in the presence of Atos next CEO, Rodolphe Belmer, this meeting of the Quantum Advisory Board was an opportunity to review Atos recent work and to take stock of future prospects.

Artur Ekert, professor of quantum physics at the Mathematical Institute, University of Oxford, founding director of the Centre for Quantum Technologies in Singapore and member of the Quantum Advisory Board said: We are truly impressed by the work and the progress that Atos has made over the past year. The company takes quantum computing seriously and it gives us great pleasure to see it becoming one of the key players in the field. It is a natural progression for Atos. As a world leader in High Performance Computing (HPC), Atos is in a unique position to combine its existing, extensive, expertise in HPC with quantum technology and take both fields to new heights. We are confident that Atos will shape the quantum landscape in years to come, both with research and applications that have a long lasting impact.

In the field of quantum hybridisation, Atos is enabling several applications - in the areas of chemistry, such as catalysis design for nitrogen fixation, and for the optimisation of smart grids. Atos is also involved in two additional quantum hybridization projects, which are currently being launched:

The European HPC-QS (Quantum Simulation) project, which started in December 2021, aims to build the first European hybrid supercomputer with an integrated quantum accelerator by the end of 2023.

Atos is involved in this project alongside national partners including the CEA, GENCI, Pasqal and the Julich Supercomputing Centre. Pasqal will provide its analog quantum accelerator and Atos, with its quantum simulator, the Quantum Learning Machine (QLM), will ensure the hybridization with the HPCs at the two datacenters at GENCI and Julich.

The Q-EXA project, part of the German governmental quantum plan, will see a consortium of partners, including Atos, work together to integrate a German quantum computer into an HPC supercomputer for the first time. Atos QLM will be instrumental in connecting the quantum computer, from start-up IQM (also part of the Atos Scaler program) to the Leibniz Supercomputing centre.

The European Organization for Nuclear Research (CERN), one of the worlds largest and most respected research centres, based in Geneva, has recently acquired an Atos Quantum Learning Machine (QLM) appliance and joined the Atos User Club. The Atos QLM, delivered to CERN in October, will be made available to the CERN scientific community to support research activities in the framework of the CERN Quantum Technology Initiative (CERN QTI), thus accelerating the investigation of quantum advantage for high-energy physics (HEP) and beyond.

Alberto Di Meglio, coordinator of the CERN Quantum Technology Initiative comments: Building on CERNs unique expertise and strong collaborative culture, co-development efforts are at the core of CERN QTI. As we explore the fast-evolving field of quantum technologies, access to the Atos Quantum Learning Machine and Atos expertise can play an important role in our quantum developments roadmap in support of the high-energy physics community and beyond. A dedicated training workshop is being organized with Atos to investigate the full functionality and potential of the quantum appliance, as well as its future application for some of the CERN QTI activities.

Pierre Barnab, interim co-CEO and head of Big Data and Cybersecurity at Atos added: Atos is the world leader in the convergence of supercomputing and quantum computing, as shown by these two major and strategic projects we are involved in France and Germany. At a time when the French government is expected to announce its plan for quantum computing, the durability of our Quantum Board, the quality of the work carried out and the concrete applications of this research in major projects reinforce this position.

The Quantum Advisory Board is made up of universally recognised quantum physicists and includes:

As a result of Atos programme to anticipate the future of quantum computing and to be prepared for the opportunities and challenges that come with it - Atos Quantum - Atos was the first organization to offer a quantum noisy simulation module that can simulate real Qubits, the Atos QLM and to propose Q-score, the only universal metrics to assess quantum performance and superiority. Atos is also the first European patent holder in quantum computing.

Go here to see the original:
Atos announces hybridisation projects at its 8th Quantum Advisory Board - Scientific Computing World