What Is Machine Learning? | PCMag
In December 2017, DeepMind, the research lab acquired by Google in 2014, introduced AlphaZero, an artificial intelligence program that could defeat world champions at several board games.
Interestingly, AlphaZero received zero instructions from humans on how to play the games (hence the name). Instead, it used machine learning, a branch of AI that develops its behavior through experience instead of explicit commands.
Within 24 hours, AlphaZero achieved superhuman performance in chess and defeated the previous world-champion chess program. Shortly after, AlphaZero's machine-learning algorithm also mastered Shogi (Japanese chess) and the Chinese board game Go, and it defeated its predecessor, AlphaGo, 100 to zero.
Machine learning has become popular in recent years and is helping computers solve problems previously thought to be the exclusive domain of human intelligence. And even though it's still a far shot from the original vision of artificial intelligence, machine learning has gotten us much closer to the ultimate goal of creating thinking machines.
Traditional approaches to developing artificial intelligence involve meticulously coding all the rules and knowledge that define an AI agent's behavior. When creating rule-based AI, developers must write instructions that specify how the AI should behave in response to every possible situation. This rule-based approach, also known as good old-fashioned AI (GOFAI) or symbolic AI, tries to mimic the human mind's reasoning and knowledge representation functions.
A perfect example of symbolic AI is Stockfish, a top-ranking, open-source chess engine more than 10 years in the making. Hundreds of programmers and chess players have contributed to Stockfish and helped develop its logic by coding its rulesfor example, what the AI should do when the opponent moves its knight from B1 to C3.
if a developer creates programs and interaction the traditional way. They do that by being base skil
But rule-based AI often breaks when dealing with situations where the rules are too complex and implicit. Recognizing speech and objects in images, for instance, are advanced operations that can't be expressed in logical rules.
As opposed to symbolic AI, machine-learning AI models are developed not by writing rules but by gathering examples. For instance, to create a machine learningbased chess engine, a developer creates a base algorithm and then "trains" it with data from thousands of previously played chess games. By analyzing the data, the AI finds common patterns that define winning strategies, which it can use to defeat real opponents.
The more games the AI reviews, the better it becomes at predicting winning moves during play. This is why machine learning is defined as a program whose performance improves with experience.
Machine learning is applicable to many real-world tasks, including image classification, voice recognition, content recommendation, fraud detection, and natural language processing.
Depending on the problem they want to solve, developers prepare relevant data to build their machine-learning model. For instance, if they wanted to use machine learning to detect fraudulent bank transactions, developers would compile a list of existing transactions and label them with their outcome (fraudulent or valid). When they feed the data to the algorithm, it separates the fraudulent and valid transactions and finds the common characteristics within each of the two classes. The process of training models with annotated data is called "supervised learning" and is currently the dominant form of machine learning.
Many online repositories of labeled data for different tasks already exist. Some popular examples are ImageNet, an open-source dataset of more than 14 million labeled images, and MNIST, a dataset of 60,000 labeled handwritten digits. Machine-learning developers also use platforms such as Amazon's Mechanical Turk, an online, on-demand hiring hub for performing cognitive tasks such as labeling images and audio samples. And a growing sector of startups specialize in data annotation.
But not all problems require labeled data. Some machine-learning problems can be solved through "unsupervised learning," where you provide the AI model with raw data and let it figure out for itself which patterns are relevant.
A common use of unsupervised learning is anomaly detection. For instance, a machine-learning algorithm can train on the raw network-traffic data of an internet-connected devicesay, a smart fridge. After training, the AI establishes a baseline for the device and can flag outlier behavior. If the device becomes infected with malware and starts communicating with malicious servers, the machine-learning model will be able to detect it, because the network traffic is different from the normal behavior observed during training.
By now, you probably know that quality training data plays a huge role in the efficiency of machine learning models. But reinforcement learning is a specialized type of machine learning in which an AI develops its behavior without using previous data.
Reinforcement-learning models start with a clean slate. They're instructed only on their environment's basic rules and the task at hand. Through trial and error, they learn to optimize their actions for their goals.
DeepMind's AlphaZero is an interesting example of reinforcement learning. As opposed to other machine-learning models, which must see how humans play chess and learn from them, AlphaZero started only knowing the pieces' moves and the game's win conditions. After that, it played millions of matches against itself, starting with random actions and gradually developing behavioral patterns.
Reinforcement learning is a hot area of research. It's the main technology used to develop AI models that can master complex games such as Dota 2 and StarCraft 2 and is also used to solve real-life problems such as managing data center resources and creating robotic hands that can handle objects with human-like dexterity.
Deep learning is another popular subset of machine learning. It uses artificial neural networks, software constructions that are roughly inspired by the biological structure of the human brain.
Neural networks excel at processing unstructured data such as images, video, audio, and long excerpts of text such as articles and research papers. Before deep learning, machine-learning experts had to put a lot of effort into extracting features from images and videos and would run their algorithms on top of that. Neural networks automatically detect those features without requiring much effort from human engineers.
Deep learning is behind many modern AI technologies such as driverless cars, advanced translation systems, and the facial-recognition tech in your iPhone X.
People often confuse machine learning with human-level artificial intelligence, and the marketing departments of some companies intentionally use the terms interchangeably. But while machine learning has taken great strides toward solving complex problems, it is still very far from creating the thinking machines envisioned by the pioneers of AI.
In addition to learning from experience, true intelligence requires reasoning, common sense, and abstract thinkingareas in which machine learning models perform very poorly.
For instance, while machine learning is good at complicated pattern-recognition tasks such as predicting breast cancer five years in advance, it struggles with simpler logic and reasoning tasks such as solving high-school math problems.
Machine learning's lack of reasoning power makes it bad at generalizing its knowledge. For instance, a machine-learning agent that can play Super Mario 3 like a pro won't dominate another platform game, such as Mega Man, or even another version of Super Mario. It would need to be trained from scratch.
Without the power to extract conceptual knowledge from experience, machine-learning models require tons of training data to perform. Unfortunately, many domains lack sufficient training data or don't have the funds to acquire more. Deep learning, which is now the prevalent form of machine learning, also suffers from an explainability problem: Neural networks work in complicated ways, and even their creators struggle to follow their decision-making processes. This makes it difficult to use the power of neural networks in settings where there's a legal requirement to explain AI decisions.
Fortunately, efforts are being made to overcome machine learning's limits. One notable example is a widespread initiative by DARPA, the Department of Defense's research arm, to create explainable AI models.
Other projects aim to reduce machine learning's over-reliance on annotated data and make the technology accessible to domains with limited training data. Researchers at IBM and MIT recently made inroads in the field by combining symbolic AI with neural networks. Hybrid AI models require less data for training and can provide step-by-step explanations of their decisions.
Whether the evolution of machine learning will eventually help us reach the ever-elusive goal of creating human-level AI remains to be seen. But what we know for sure is that thanks to advances in machine learning, the devices sitting on our desks and resting in our pockets are getting smarter every day.
Sign up for What's New Now to get our top stories delivered to your inbox every morning
This newsletter may contain advertising, deals, or affiliate links. Subscribing to a newsletter indicates your consent to our Terms of Use and Privacy Policy. You may unsubscribe from the newsletters at any time.
More:
What Is Machine Learning? | PCMag
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]