U of Texas will stop using controversial algorithm to evaluate Ph.D. applicants – Inside Higher Ed
In 2013, the University of Texas at Austins computer science department began usinga machine-learning system called GRADE to help make decisions about who gets into its Ph.D. program -- and who doesnt. This year, the department abandoned it.
Before the announcement, which the department released in the form of a tweet reply, few had even heard of the program. Now, its critics -- concerned about diversity, equity and fairness in admissions -- say it should never have been used in the first place.
Humans code these systems. Humans are encoding their own biases into these algorithms, said Yasmeen Musthafa, a Ph.D. student in plasma physics at the University of California, Irvine, who rang alarm bells about the system on Twitter. What would UT Austin CS department have looked like without GRADE? Well never know.
GRADE (which stands for GRaduate ADmissions Evaluator) was created by a UT faculty member and UT graduate student in computer science, originally to help the graduate admissions committee in the department save time. GRADE predicts how likely the admissions committee is to approve an applicant and expresses that prediction as a numerical score out of five. The system also explains what factors most impacted its decision.
The UT researchers who made GRADE trained it on a database of past admissions decisions. The system uses patterns from those decisions to calculate its scores for candidates.
For example, letters of recommendation containing the words best, award, research or Ph.D. are predictive of admission -- and can lead to a higher score -- while letters containing the words good, class, programming or technology are predictive of rejection. A higher grade point average means an applicant is more likely to be accepted, as does the name of an elite college or university on the rsum. Within the system, institutions were encoded into the categories elite, good and other, based on a survey of UT computer science faculty.
Every application GRADE scored during the seven years it was in use was still reviewed by at least one human committee member, UT Austin has said, but sometimes only one. Before GRADE, faculty members made multiple review passes over the pool. The system saved the committee time, according to its developers, by allowing faculty to focus on applicants on the cusp of admission or rejection and review applicants in descending order of quality.
For what its worth, GRADE did appear to successfully save the committee time. In the 2012 and 2013 application seasons, developers said in a paper about their work, it reduced the number of full reviews per candidate by 71percent and cut the total time reviewing files by 74percent. (One full review typically takes 10 to 30 minutes.) Between the years 2000 and 2012, applications to the computer science Ph.D. program grew from about 250 to nearly 650, though the number of faculty able to review those applications remained mostly constant. In the years since 2012, the number of applications has reached over 1,200.
The universitys use of the technology escaped attention for a number of years, until this month, when the physics department at the University of Maryland at College Park held a colloquium talk with the two creators of GRADE.
The talk gained attention on Twitter as graduate students accused GRADEs creators of further disadvantaging underrepresented groups in the computer science admissions process.
We put letters of recommendation in to try to lift people up who have maybe not great GPAs. We put a personal statement in the graduate application process to try to give marginalized folks a chance to have their voice heard, said Musthafa, who is also a member of the Physics and Astronomy Anti-Racism Coalition. The worst part about GRADE is that it throws that out completely.
Advocates have long been concerned about the potential for human biases to be baked into or exacerbated by machine-learning algorithms. Algorithms are trained on data. When it comes to people, what those data look like is a result of historical inequity. Preferences for one type of person over another are often the result of conscious or unconscious bias.
That hasnt stopped institutions from using machine-learning systems in hiring, policing and prison sentencing for a number of years now, often to great controversy.
Every process is going to make some mistakes. The question is, where are those mistakes likely to be made and who is likely to suffer as a result of them? said Manish Raghavan, a computer science Ph.D. candidate at Cornell University who has researched and written about bias in algorithms. Likely those from underrepresented groups or people who dont have the resources to be attending elite institutions.
Though many women and people who are Black and Latinx have had successful careers in computer science, those groups are underrepresented in the field at large. In 2017, whites, Asians and nonresident aliens received 84percent of degrees awarded for computer science in the United States.
At UT, nearly 80percent of undergraduates in computer science in 2017 were men.
Raghavan said he was surprised that there appeared to be no effort to audit the impacts of GRADE, such as how scores differ across demographic groups.
GRADEs creators have said that the system is only programmed to replicate what the admissions committee was doing prior to 2013, not to make better decisions than humans could. The system isnt programmed to use race or gender to make its predictions, theyve said. In fact, when given those features as options to help make its predictions, it chooses to give them zero weight. GRADEs creators have said this is evidence that the committees decisions are gender and race neutral.
Detractors have countered this, arguing that race and gender can be encoded into other features of the application that the system uses. Womens colleges and historically Black universities may be undervalued by the algorithm, theyve said. Letters of recommendation are known to reflect gender bias, as recommenders are more likely to describe female students as caring rather than assertive or trailblazing.
In the Maryland talk, faculty raised their own concerns. What a committee is looking for might change each year. Letters of recommendation and personal statements should be thoughtfully considered, not turned into a bag of words, they said.
Im kind of shocked you did this experiment on your students, Steve Rolston, chair of the physics department at Maryland, said during the talk. You seem to have built a model that builds in whatever bias your committee had in 2013 and youve been using it ever since.
In an interview, Rolston said graduate admissions can certainly be a challenge. His department receives over 800 graduate applications per year, which takes a good deal of time for faculty to evaluate. But, he said, his department would never use a tool like this.
If I ask you to do a classifier of images and youre looking for dogs, I can check afterwards that, yes, it did correctly identify dogs, he said. But when Im asking for decisions about people, whether it's graduate admissions, or hiring or prison sentencing, theres no obvious correct answer. You train it, but you dont know what the result is really telling you.
Rolston said having at least one faculty member review each application was not a convincing safeguard.
If I give you a file and say, Well, the algorithm said this person shouldnt be accepted, that will inevitably bias the way you look at it, he said.
UT Austin has said GRADE was used to organize admissions decisions, rather than make them.
"It was never used to make decisions to admit or reject prospective students, asat least one faculty member directly evaluates applicants at each stage of the review process," a spokesperson for the Graduate School said via email.
Despite the criticism around diversity and equity, UT Austin has said GRADE is being phased out because it is too difficult to maintain.
Changes in the data and software environment made the system increasingly difficult to maintain, and its use was discontinued, the spokesperson said via email. The Graduate School works with graduate programs and faculty members across campus to promote holistic application review and reduce bias in admissions decisions.
For Musthafa, the fact that GRADE may be gone for good does not impact the existing inequity in graduate admissions.
The entire system is steeped in racism, sexism and ableism, they said. How many years of POC computer science students got denied [because of this]?
Addressing that inequity -- as well as the competitiveness that led to the creation of GRADE -- may mean expanding committees, paying people for their time and giving Black and Latinx graduate students a voice in those decisions, they said. But automating cannot be part of that decision making.
If we automate this to any extent, its just going to lock people out of academia, Musthafa said. The racism of today is being immortalized in the algorithms of tomorrow.
Continued here:
U of Texas will stop using controversial algorithm to evaluate Ph.D. applicants - Inside Higher Ed
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]
- Capturing the complexity of human strategic decision-making with machine learning - Nature - June 26th, 2025 [June 26th, 2025]
- A framework to evaluate machine learning crystal stability predictions - Nature - June 24th, 2025 [June 24th, 2025]
- Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene -... - June 24th, 2025 [June 24th, 2025]
- How AI and Machine Learning Are Powering the Next Generation of Pump Maintenance - Robotics Tomorrow - June 24th, 2025 [June 24th, 2025]
- Actuate Therapeutics Reports Positive Biomarker and Machine Learning Data from Phase 2 Elraglusib Trial in First-Line Treatment of Metastatic... - June 24th, 2025 [June 24th, 2025]
- Texas A&M Researchers Introduce a Two-Phase Machine Learning Method Named ShockCast for High-Speed Flow Simulation with Neural Temporal Re-Meshing -... - June 22nd, 2025 [June 22nd, 2025]
- Machine learning method helps bring diagnostic testing out of the lab - Medical Xpress - June 22nd, 2025 [June 22nd, 2025]
- Sebi proposes five-point rulebook for responsible use of AI, machine learning - The New Indian Express - June 22nd, 2025 [June 22nd, 2025]
- HAPIR: a refined Hallmark gene set-based machine learning approach for predicting immunotherapy response in cancer patients - Nature - June 20th, 2025 [June 20th, 2025]
- Machine learning boosts accuracy of point-of-care disease detection - News-Medical - June 20th, 2025 [June 20th, 2025]
- How AI and Machine Learning Are Transforming Food Poisoning Outbreak Detection - Food Poisoning News - June 20th, 2025 [June 20th, 2025]
- Evo 2 machine learning model enlists the power of AI in the fight against diseases - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Machine learning can predict which babies will be born with low birth weights - Medical Xpress - June 20th, 2025 [June 20th, 2025]
- Development and Validation of a Machine Learning Model for Identifying Novel HIV Integrase Inhibitors - Cureus - June 20th, 2025 [June 20th, 2025]
- IIT launches new online certificate programme in data science and machine learning for working profession - Times of India - June 20th, 2025 [June 20th, 2025]
- Calgary startup tackles referee abuse with microphones and machine learning - Yahoo - June 20th, 2025 [June 20th, 2025]
- New machine learning program accurately predicts who will stick with their exercise program - AOL.com - June 20th, 2025 [June 20th, 2025]
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]