The POWER Interview: The Importance of AI and Machine Learning – POWER magazine
Artificial intelligence (AI) and machine learning (ML) are becoming synonymous with the operation of power generation facilities. The increased digitization of power plants, from equipment to software, involves both thermal generation and renewable energy installations.
Both AI and ML will be key elements for the design of future energy systems, supporting the growth of smart grids and improving the efficiency of power generation, along with the interaction among electricity customers and utilities.
The technology group Wrtsil is a global leader in using data to improve operations in the power generation sector. The company helps generators make better asset management decisions, which supports predictive maintenance. The company uses AI, along with advanced diagnostics, and its deep equipment expertise greatly to enhance the safety, reliability, and efficiency of power equipment and systems.
Luke Witmer, general manager, Data Science, Energy Storage & Optimization at Wrtsil, talked with POWER about the importance of AI and ML to the future of power generation and electricity markets.
POWER: How can artificial intelligence (AI) be used in power trading, and with regard to forecasts and other issues?
Witmer: Artificial intelligence is a very wide field. Even a simple if/else statement is technically AI (a computer making a decision). Forecasts for price and power are generated by AI (some algorithm with some historic data set), and represent the expected trajectory or probability distribution of that value.
Power trading is also a wide field. There are many different markets that span different time periods and different electricity (power) services that power plants provide. Its more than just buying low and selling high, though that is a large piece of it. Forecasts are generally not very good at predicting exactly when electricity price spikes will happen. There is always a tradeoff between saving some power capacity for the biggest price spikes versus allocating more of your power for marginal prices. In the end, as a power trader, it is important to remember that the historical data is not a picture of the future, but rather a statistical distribution that can be leveraged to inform the most probable outcome of the unknown future. AI is more capable at leveraging statistics than people will ever be.
POWER: Machine learning and AI in power generation rely on digitalization. As the use of data becomes more important, what steps need to be taken to support AI and machine learning while still accounting for cybersecurity?
Witmer: A lot of steps. Sorry for the lame duck answer here. Regular whitehat penetration testing by ethical hackers is probably the best first step. The second step should be to diligently and quickly address each critical issue that is discovered through that process. This can be done by partnering with technology providers who have the right solution (cyber security practices, certifications, and technology) to enable the data flow that is required.
POWER: How can the power generation industry benefit from machine learning?
Witmer: The benefit is higher utilization of the existing infrastructure. There is a lot of under-utilized intrastructure in the power generation industry. This can be accomplished with greater intelligence on the edges of the network (out at each substation and at each independent generation facility) coupled with greater intelligence at the points of central dispatch.
POWER: Can machines used in power generation learn from their experiences; would an example be that a machine could perform more efficiently over time based on past experience?
Witmer: Yes and no. It depends what you mean by machines. A machine itself is simply pieces of metal. An analogy would be that your air conditioner at home cant learn anything, but your smart thermostat can. Your air conditioner needs to just operate as efficiently as possible when its told to operate, constrained by physics. Power generation equipment is the same. The controls however, whether at some point of aggregation, or transmission intersection, or at a central dispatch center, can certainly apply machine learning to operate differently as time goes on, adapting in real time to changing trends and conditions in the electricity grids and markets of the world.
POWER: What are some of the uses of artificial intelligence in the power industry?
Witmer: As mentioned in the response to question 1, I think it appropriate to point you at some definitions and descriptions of AI. I find wikipedia to be the best organized and moderated by experts.
In the end, its a question of intelligent control. There are many uses of AI in the power industry. To start listing some of them is insufficient, but, to give some idea, I would say that we use AI in the form of rules that automatically ramp power plants up/down by speeding up or slowing down their speed governors, in the form of neural networks that perform load forecasting based on historic data and the present state data (time of day, metering values, etc.), in the form of economic dispatch systems that leverage these forecasts, and in the form of reinforcement learning for statistically based automated bid generation in open markets. Our electricity grids combined with their associated controls and markets are arguably the most complex machines that humans have built.
POWER: How can AI benefit centralized generation, and can it provide cost savings for power customers?
Witmer: Centralized power systems continue to thrive from significant economies of scale. Centralized power systems enable equal access to clean power at the lowest cost, reducing economic inequality. I view large renewable power plants that are owned by independent power producers as centralized power generation, dispatched by centralized grid operators. Regardless of whether the path forward is more or less centralized, AI brings value to all parties. Not only does it maximize revenue for any specific asset (thus the asset owner), it also reduces overall electricity prices for all consumers.
POWER: How important is AI to smart grids? How important is AI to the integration of e-mobility (electric vehicles, etc.) to the grid?
Witmer: AI is very important to smart grids. AI is extremely important to the integration of smart charging of electric vehicles, and leveraging of those mobile batteries for grid services when they are plugged into the grid (vehicles to grid, or V2G). However, the more important piece is for the right market forces to be created (economics), so that people can realize the value (actually get paid) for allowing their vehicles to participate in these kinds of services.
The mobile batteries of EVs will be under-utilized if we do not integrate the controls for charging/discharging this equipment in a way that gives both the consumers the ability to opt in/out of any service but also for the centralized dispatch to leverage this equipment as well. Its less a question of AI, and more a question of economics and human behavioral science. Once the economics are leveraged and the right tools are in place, then AI will be able to forecast the availability and subsequent utility that the grid will be able to extract from the variable infrastructure of plugged in EVs.
POWER: How important is AI to the design and construction of virtual power plants?
Witmer: Interesting question. On one level, this is a question that raises an existential threat to aspects of my own job (but thats a good thing because if a computer can do it, I dont want to do it!). Its a bit of a chicken-and-egg scenario. Today, any power plant (virtual or actual), is designed through a process that involves a lot of modeling, or simulations of what-if scenarios. That model must be as accurate as possible, including the controls behavior of not only the new plant in question, but also the rest of the grid and/or markets nearby.
As more AI is used in the actual context of this new potential power plant, the model must also contain a reflection of that same AI. No model is perfect, but as more AI gets used in the actual dispatch of power plants, more AI will be needed in the design and creation process for new power plants or aggregations of power generation equipment.
POWER: What do you see as the future of AI and machine learning for power generation / utilities?
Witmer: The short-term future is simply an extension of what we see today. As more renewables come onto the grids, we will see more negative price events and more price volatility. AI will be able to thrive in that environment. I suspect that as time goes on, the existing market structures will cease to be the most efficient for society. In fact, AI is likely going to be able to take advantage of some of those legacy features (think Enron).
Hopefully the independent system operators of the world can adapt quickly enough to the changing conditions, but I remain skeptical of that in all scenarios. With growing renewables that have free fuel, the model of vertically integrated utilities with an integrated resource planning (IRP) process will likely yield the most economically efficient structure. I think that we will see growing inefficiencies in regions that have too many manufactured rules and structure imposed by legacy markets, designed around marginal costs of operating fossil fuel-burning plants.
Darrell Proctor is associate editor for POWER (@POWERmagazine).
Read more from the original source:
The POWER Interview: The Importance of AI and Machine Learning - POWER magazine
- Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S - ACS Publications - July 24th, 2025 [July 24th, 2025]
- Machine learning-based academic performance prediction with explainability for enhanced decision-making in educational institutions - Nature - July 24th, 2025 [July 24th, 2025]
- Can External Validation Tools Can Improve Annotation Quality for LLM-as-a-Judge - Apple Machine Learning Research - July 24th, 2025 [July 24th, 2025]
- How to use learning curves to evaluate the sample size for malaria prediction models developed using machine learning algorithms - Malaria Journal - July 24th, 2025 [July 24th, 2025]
- Development and validation of a dynamic early warning system with time-varying machine learning models for predicting hemodynamic instability in... - July 24th, 2025 [July 24th, 2025]
- Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning -... - July 24th, 2025 [July 24th, 2025]
- Algorithmica Reports 35% Return in First Fiscal Year, Driven by Machine Learning Trading Technology - PR Newswire - July 24th, 2025 [July 24th, 2025]
- New research using machine learning further links increase in earthquakes, quake intensity, in Raton Basin to wastewater injections - The... - July 24th, 2025 [July 24th, 2025]
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]
- Utilizing machine learning to predict MRI signal outputs from iron oxide nanoparticles through the PSLG algorithm - Nature - July 16th, 2025 [July 16th, 2025]
- Developing a machine-learning model to enable treatment selection for neoadjuvant chemotherapy for esophageal cancer - Nature - July 16th, 2025 [July 16th, 2025]
- Advancing crop recommendation system with supervised machine learning and explainable artificial intelligence - Nature - July 16th, 2025 [July 16th, 2025]
- Predicting clozapine-induced adverse drug reaction biomarkers using machine learning - Nature - July 16th, 2025 [July 16th, 2025]
- Postoperative complication severity prediction in penile prosthesis implantation: a machine learning-based predictive modeling study - Nature - July 16th, 2025 [July 16th, 2025]
- The Future of AI & Machine Learning: Perspective on Shaping Tomorrows Business Landscape - Vocal - July 16th, 2025 [July 16th, 2025]
- Machine Learning: Your Ticket to a Thriving Career in the Tech World - The Impressive Times - July 14th, 2025 [July 14th, 2025]
- Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal... - July 14th, 2025 [July 14th, 2025]
- Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics - Nature - July 14th, 2025 [July 14th, 2025]
- Development and validation of a machine learning-based nomogram for survival prediction of patients with hilar cholangiocarcinoma after... - July 12th, 2025 [July 12th, 2025]
- Geochemical-integrated machine learning approach predicts the distribution of cadmium speciation in European and Chinese topsoils - Nature - July 12th, 2025 [July 12th, 2025]
- Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma... - July 12th, 2025 [July 12th, 2025]
- Application of supervised machine learning and unsupervised data compression models for pore pressure prediction employing drilling, petrophysical,... - July 12th, 2025 [July 12th, 2025]
- Machine learning identifies lipid-associated genes and constructs diagnostic and prognostic models for idiopathic pulmonary fibrosis - Orphanet... - July 12th, 2025 [July 12th, 2025]
- An evaluation methodology for machine learning-based tandem mass spectra similarity prediction - BMC Bioinformatics - July 12th, 2025 [July 12th, 2025]
- The Rise of AI in Trading: Machine Learning and the Stock Market - Disruption Banking - July 12th, 2025 [July 12th, 2025]
- Integrative analysis identifies IL-6/JUN/MMP-9 pathway destroyed blood-brain-barrier in autism mice via machine learning and bioinformatic analysis -... - July 12th, 2025 [July 12th, 2025]
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]
- Machine learning-based identification of key factors and spatial heterogeneity analysis of urban flooding: a case study of the central urban area of... - July 10th, 2025 [July 10th, 2025]
- Developing machine learning frameworks to predict mechanical properties of ultra-high performance concrete mixed with various industrial byproducts -... - July 10th, 2025 [July 10th, 2025]
- Small Drones Market Trend Analysis and Forecast Report 2025-2034 | AI and Machine Learning Revolutionizing Autonomous Operations, Trade Tariffs Push... - July 10th, 2025 [July 10th, 2025]
- When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning - Dataconomy - July 10th, 2025 [July 10th, 2025]
- New Study Uses Gait Data and Machine Learning for Early Detection of Anxiety and Depression - AZoSensors - July 10th, 2025 [July 10th, 2025]
- Machine Learning and the Evolution of Mobile Apps - CIO Applications - July 10th, 2025 [July 10th, 2025]
- Artificial Intelligence, Machine Learning, and Big Data in Thailand: Legal and Regulatory Developments 2025 - Lexology - July 10th, 2025 [July 10th, 2025]
- Karen Hao on how the AI boom became a new imperial frontier - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Machine Learning and AI in Enhancing Image Analysis of 3D Samples - Drug Target Review - July 8th, 2025 [July 8th, 2025]
- Gartner Predicts Over 40% of Agentic AI Projects Will Be Canceled by End of 2027 - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Explainable machine learning model for predicting the transarterial chemoembolization response and subtypes of hepatocellular carcinoma patients - BMC... - July 8th, 2025 [July 8th, 2025]
- Identification and validation of glucocorticoid receptor and programmed cell death-related genes in spinal cord injury using machine learning - Nature - July 8th, 2025 [July 8th, 2025]
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]