The growth stage of applied AI and MLOps – TechTalks
This article is part of our series that explores thebusiness of artificial intelligence
Applied artificial intelligence tops the list of 14 most influential technology trends in McKinsey & Companys Technology Trends Outlook 2022 report.
For now, applied AI (which might also be referred to as enterprise AI) is mainly the use of machine learning and deep learning models in real-world applications. A closely related trend that also made it to McKinseys top-14 list is industrializing machine learning, which refers to MLOps platforms and other tools that make it easier to train, deploy, integrate, and update ML models in different applications and environments.
McKinseys findings, which are in line with similar reports released by consulting and research firms, show that after a decade of investment, research, and development of tools, the barriers to applied AI are slowly fading.
Large tech companies, which often house many of the top machine learning/deep learning scientists and engineers, have been researching new algorithms and applying them to their products for years. Thanks to the developments highlighted in McKinseys report, more organizations can adopt machine learning models in their applications and bring their benefits to their customers and users.
The recent decade has seen a revived and growing mainstream interest in artificial intelligence, mainly thanks to the proven capabilities of deep neural networks in performing tasks that were previously thought to be beyond the limits of computers. During the same period, the machine learning research community has made very impressive progress in some of the challenging areas of AI, including computer vision and natural language processing.
The scientific breakthroughs in machine learning were largely made possible because of the growing capabilities to collect, store, and access data in different domains. At the same time, advances in processors and cloud computing have made it possible to train and run neural networks at speeds and scales that were previously thought to be impossible.
Some of the milestone achievements of deep learning were followed by news cycles that publicized (and often exaggerated) the capabilities of contemporary AI. Today, many companies try to present themselves as AI first, or pitch their products as using the latest and greatest in deep learning.
However, bringing ML from research labs to actual products presents several challenges, which is why most machine learning strategies fail. Creating and maintaining products that use machine learning requires different infrastructure, tools, and skill sets than those used in traditional software. Organizations need data lakes to collect and store data, and data engineers to set up, maintain, and configure the data infrastructure that makes it possible to train and update ML models. They need data scientists and ML engineers to prepare the data and models that will power their applications. They need distributed computing experts that can make ML models run in a time- and cost-efficient manner and at scale. And they need product managers who can adapt the ML system to their business model and software engineers who can integrate the ML pipeline into their products.
The data, hardware, and talent costs that come with enterprise AI have been often too prohibitive for smaller organizations to make long-term investments in ML strategies.
It is against this backdrop that the McKinsey & Company reports findings are worth examining.
The report ranks tech trends based on five quantifiable measures: search engine queries, news publications, patents, research publications, and investment. It is worth noting that such quantitative measures dont always paint the most accurate picture of the relevance of a trend. But tracking them over time can give a good estimate of how a technology goes through the different steps of hype, adoption, and productivity cycle.
McKinsey further corroborated its findings through surveys and interviews with experts from 20 different industries, which gives a better picture of what the opportunities and challenges are.
The report is based on 2018-2021 data, which does not fully account for the downturn that capital markets are currently undergoing. According to the findings, applied AI has seen growth in all quantifiable measures except for the search engine queries category (which is a grey area, since AI terms and trends are constantly evolving). McKinsey gives applied AI the highest innovation score and top-five investment score with $165 billion in 2021.
(Measuring investment is also very subjective and depends on how you define applied AIe.g., if a company that secures a huge round of funding uses machine learning as a small part of its product, will it count as an investment in applied AI?)
In terms of industry relevance, some of the ML applications mentioned in the report include use cases such as recommendation engines (e.g., content recommendation, smart upselling), detection and prevention (e.g., credit card fraud detection, customer complaint modeling, early disease diagnosis, defect prediction), and time series analysis (e.g., managing price volatility, demand forecasting). Interestingly, these are some of the areas of machine learning where the algorithms have been well-developed for years. Though computer vision is only mentioned once in the use cases, some of the applications might benefit from it (e.g., document scanning, equipment defect detection).
The report also mentions some of the more advanced areas of machine learning, such as generative deep learning models (e.g., simulation engines for self-driving cars, generating chemical compounds), transformer models (e.g., drug discovery), graph neural networks, and robotics.
This further drives the point that the main hurdle for the adoption of applied AI has not been poor machine learning algorithms but the lack of tooling and infrastructure to put well-known and -tested algorithms to efficient use. These constraints have limited the use of applied AI to companies that dont have enormous resources and access to scarce machine learning talent.
In recent years, there has been tremendous advances in some of these fronts. Weve seen the advent and maturity of no-code ML platforms, easy-to-use ML programming libraries, API-based ML services (MLaaS), and special hardware for training and running ML models. At the same time, the data storage technologies underlying ML services have evolved to become more flexible, interoperable, and scalable. Meanwhile, some enterprise AI companies have started to develop and provide ML solutions for specific sectors (e.g., financial services, oil and gas, retail).
All these developments reduce the financial and technical barriers to adopting machine learning in their business models. In many cases, companies can integrate ML services into their applications without having in-depth knowledge of the algorithms running in the background.
According to McKinseys 2021 survey of industry experts, 56 percent of respondents said their organizations had adopted AI, up from 50 percent in the 2020 survey. The 2021 survey also indicated that adopting AI can have financial benefits: 27 percent of respondents attributed 5 percent or more of their companies EBIT to AI.
The second AI-related tech trend included in the McKinsey & Company report is the industrialization of machine learning. This is a vague term and has much overlap with the applied AI category, so the report defines it as an interoperable stack of technical tools for automating ML and scaling up its use so that organizations can realize its full potential.
The technologies underlying advances in this field are mostly the same that have led to the growth of applied AI (better data storage platforms, hardware stacks, ML development tools and platforms, etc.). However, one specific field that has seen impressive developments in recent years is machine learning operations (MLOps), the set of tools and practices that streamline the training, deployment, and maintenance of ML models.
MLOps platforms provide tools for curating, processing, and labeling data; training and comparing different machine learning models; versioning control for dataset and models; deploying ML models and monitoring their performance; and updating ML models as their performance decays, their environment changes, and new data becomes available. MLOps platforms, which are growing in number and maturity, bring together several different tasks that were previously carried out desperately and in an ad hoc fashion.
According to the report, the industrialization of machine learning can shorten the production time frame for ML applications by 90 percent (from proof of concept to product) and reduce development resources by up to 40 percent.
Despite the advances in applied AI, the field still has some gaps to bridge. The McKinsey report states that the availability of resources such as talent and funding remain two of the hurdles for the further growth of enterprise AI. Currently, the capital markets are in a downturn, and all sectors, including AI, are facing problems funding their startups and companies.
However, despite the AI capital pie becoming smaller, funding has not stopped altogether. According to a recent CB Insights report, companies that have already achieved product/market fit and are ready for aggressive growth are still managing to secure mega-funding rounds (above $100 million). This suggests that companies that dont have the margins to launch new ML strategies will have a hard time receiving outside funding. But applied ML platforms that have already cornered their share of the market will continue to draw interest from investors.
Another important challenge that the report mentions is data risks and vulnerabilities. This is becoming an increasingly critical issue for applied machine learning. Like its development lifecycle, the security threat landscape of machine learning is different from that of traditional software. The security tools used in most software development platforms are not designed to detect adversarial examples, data poisoning, membership inference attacks, and other types of threats against ML models.
Fortunately, the security and machine learning communities are coming together to develop tools and practices for creating secure ML pipelines. As applied AI continues to grow, we can expect other sectors to speed up their adoption of ML, which will in turn further accelerate the pace of innovation in the field.
Here is the original post:
The growth stage of applied AI and MLOps - TechTalks
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]