The dos and donts of machine learning research read it, nerds – The Next Web
Did you know Neural is taking the stage this fall? Together with an amazing line-up of experts, we will explore the future of AI during TNW Conference 2021. Secure your ticket now!
Machine learning is becoming an important tool in many industries and fields of science. But ML research and product development present several challenges that, if not addressed, can steer your project in the wrong direction.
In a paper recently published on the arXiv preprint server, Michael Lones, Associate Professor in the School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, provides a list of dos and donts for machine learning research.
The paper, which Lones describes as lessons that were learnt whilst doing ML research in academia, and whilst supervising students doing ML research, covers the challenges of different stages of the machine learning research lifecycle. Although aimed at academic researchers, the papers guidelines are also useful for developers who are creating machine learning models for real-world applications.
Here are my takeaways from the paper, though I recommend anyone involved in machine learning research and development to read it in full.
Machine learning models live and thrive on data. Accordingly, across the paper, Lones reiterates the importance of paying extra attention to data across all stages of the machine learning lifecycle. You must be careful of how you gather and prepare your data and how you use it to train and test your machine learning models.
No amount of computation power and advanced technology can help you if your data doesnt come from a reliable source and hasnt been gathered in a reliable manner. And you should also use your own due diligence to check the provenance and quality of your data. Do not assume that, because a data set has been used by a number of papers, it is of good quality, Lones writes.
Your dataset might have various problems that can lead to your model learning the wrong thing.
For example, if youre working on a classification problem and your dataset contains too many examples of one class and too few of another, then the trained machine learning model might end up learning to predict every input as belonging to the stronger class. In this case, your dataset suffers from class imbalance.
While class imbalance can be spotted quickly with data exploration practices, finding other problems needs extra care and experience. For example, if all the pictures in your dataset were taken in daylight, then your machine learning model will perform poorly on dark photos. A more subtle example is the equipment used to capture the data. For instance, if youve taken all your training photos with the same camera, your model might end up learning to detect the unique visual footprint of your camera and will perform poorly on images taken with other equipment. Machine learning datasets can have all kinds of such biases.
The quantity of data is also an important issue. Make sure your data is available in enough abundance. If the signal is strong, then you can get away with less data; if its weak, then you need more data, Lones writes.
In some fields, the lack of data can be compensated for with techniques such as cross-validation and data augmentation. But in general, you should know that the more complex your machine learning model, the more training data youll need. For example, a few hundred training examples might be enough to train a simple regression model with a few parameters. But if you want to develop a deep neural network with millions of parameters, youll need much more training data.
Another important point Lones makes in the paper is the need to have a strong separation between training and test data. Machine learning engineers usually put aside part of their data to test the trained model. But sometimes, the test data leaks into the training process, which can lead to machine learning models that dont generalize to data gathered from the real world.
Dont allow test data to leak into the training process, he warns. The best thing you can do to prevent these issues is to partition off a subset of your data right at the start of your project, and only use this independent test set once to measure the generality of a single model at the end of the project.
In more complicated scenarios, youll need a validation set, a second test set that puts the machine learning model into a final evaluation process. For example, if youre doing cross-validation or ensemble learning, the original test might not provide a precise evaluation of your models. In this case, a validation set can be useful.
If you have enough data, its better to keep some aside and only use it once to provide an unbiased estimate of the final selected model instance, Lones writes.
Today, deep learning is all the rage. But not every problem needs deep learning. In fact, not every problem even needs machine learning. Sometimes, simple pattern-matching and rules will perform on par with the most complex machine learning models at a fraction of the data and computation costs.
But when it comes to problems that are specific to machine learning models, you should always have a roster of candidate algorithms to evaluate. Generally speaking, theres no such thing as a single best ML model, Lones writes. In fact, theres a proof of this, in the form of the No Free Lunch theorem, which shows that no ML approach is any better than any other when considered over every possible problem.
The first thing you should check is whether your model matches your problem type. For example, based on whether your intended output is categorical or continuous, youll need to choose the right machine learning algorithm along with the right structure. Data types (e.g., tabular data, images, unstructured text, etc.) can also be a defining factor in the class of model you use.
One important point Lones makes in his paper is the need to avoid excessive complexity. For example, if youre problem can be solved with a simple decision tree or regression model, theres no point in using deep learning.
Lones also warns against trying to reinvent the wheel. With machine learning being one of the hottest areas of research, theres always a solid chance that someone else has solved a problem that is similar to yours. In such cases, the wise thing to do would be to examine their work. This can save you a lot of time because other researchers have already faced and solved challenges that you will likely meet down the road.
To ignore previous studies is to potentially miss out on valuable information, Lones writes.
Examining papers and work by other researchers might also provide you with machine learning models that you can use and repurpose for your own problem. In fact, machine learning researchers often use each others models to save time and computational resources and start with a baseline trusted by the ML community.
Its important to avoid not invented here syndrome, i.e., only using models that have been invented at your own institution, since this may cause you to omit the best model for a particular problem, Lones warns.
Having a solid idea of what your machine learning model will be used for can greatly impact its development. If youre doing machine learning purely for academic purposes and to push the boundaries of science, then there might be no limits to the type of data or machine learning algorithms you can use. But not all academic work will remain confined in research labs.
[For] many academic studies, the eventual goal is to produce an ML model that can be deployed in a real world situation. If this is the case, then its worth thinking early on about how it is going to be deployed, Lones writes.
For example, if your model will be used in an application that runs on user devices and not on large server clusters, then you cant use large neural networks that require large amounts of memory and storage space. You must design machine learning models that can work in resource-constrained environments.
Another problem you might face is the need for explainability. In some domains, such as finance and healthcare, application developers are legally required to provide explanations of algorithmic decisions in case a user demands it. In such cases, using a black-box model might be impossible. For example, even though a deep neural network might give you a performance advantage, its lack of interpretability might make it useless. Instead, a more transparent model such as a decision tree might be a better choice even if it results in a performance hit. Alternatively, if deep learning is an absolute requirement for your application, then youll need to investigate techniques that can provide reliable interpretations of activations in the neural network.
As a machine learning engineer, you might not have precise knowledge of the requirements of your model. Therefore, it is important to talk to domain experts because they can help to steer you in the right direction and determine whether youre solving a relevant problem or not.
Failing to consider the opinion of domain experts can lead to projects which dont solve useful problems, or which solve useful problems in inappropriate ways, Lones writes.
For example, if you create a neural network that flags fraudulent banking transactions with very high accuracy but provides no explanation of its decision, then financial institutions wont be able to use it.
There are various ways to measure the performance of machine learning models, but not all of them are relevant to the problem youre solving.
For example, many ML engineers use the accuracy test to rate their models. The accuracy test measures the percent of correct predictions the model makes. This number can be misleading in some cases.
For example, consider a dataset of x-ray scans used to train a machine learning model for cancer detection. Your data is imbalanced, with 90 percent of the training examples flagged as benign and a very small number classified as malign. If your trained model scores 90 on the accuracy test, it might have just learned to label everything as benign. If used in a real-world application, this model can lead to missed cases with disastrous outcomes. In such a case, the ML team must use tests that are insensitive to class imbalance or use a confusion matrix to check other metrics. More recent techniques can provide a detailed measure of a models performance in various areas.
Based on the application, the ML developers might also want to measure several metrics. To return to the cancer detection example, in such a model, it might be important to reduce false negatives as much as possible even if it comes at the cost of lower accuracy or a slight increase in false positives. It is better to send a few people healthy people for diagnosis to the hospital than to miss critical cancer patients.
In his paper, Lones warns that when comparing several machine learning models for a problem, dont assume that bigger numbers do not necessarily mean better models. For example, performance differences might be due to your model being trained and tested on different partitions of your dataset or on entirely different datasets.
To really be sure of a fair comparison between two approaches, you should freshly implement all the models youre comparing, optimise each one to the same degree, carry out multiple evaluations and then use statistical tests to determine whether the differences in performance are significant, Lones writes.
Lones also warns not to overestimate the capabilities of your models in your reports. A common mistake is to make general statements that are not supported by the data used to train and evaluate models, he writes.
Therefore, any report of your models performance must also include the kind of data it was trained and tested on. Validating your model on multiple datasets can provide a more realistic picture of its capabilities, but you should still be wary of the kind of data errors we discussed earlier.
Transparency can also contribute greatly to other ML research. If you fully describe the architecture of your models as well as the training and validation process, other researchers that read your findings can use them in future work or even help point out potential flaws in your methodology.
Finally, aim for reproducibility. if you publish your source code and model implementations, you can provide the machine learning community with great tools in future work.
Interestingly, almost everything Lones wrote in his paper is also applicable to applied machine learning, the branch of ML that is concerned with integrating models into real products. However, I would like to add a few points that go beyond academic research and are important in real-world applications.
When it comes to data, machine learning engineers must consider an extra set of considerations before integrating them into products. Some include data privacy and security, user consent, and regulatory constraints. Many a company has fallen into trouble for mining user data without their consent.
Another important matter that ML engineers often forget in applied settings is model decay. Unlike academic research, machine learning models used in real-world applications must be retrained and updated regularly. As everyday data changes, machine learning models decay and their performance deteriorates. For example, as life habits changed in wake of the covid lockdown, ML systems that had been trained on old data started to fail and needed retraining. Likewise, language models need to be constantly updated as new trends appear and our speaking and writing habits change. These changes require the ML product team to devise a strategy for continued collection of fresh data and periodical retraining of their models.
Finally, integration challenges will be an important part of every applied machine learning project. How will your machine learning system interact with other applications currently running in your organization? Is your data infrastructure ready to be plugged into the machine learning pipeline? Does your cloud or server infrastructure support the deployment and scaling of your model? These kinds of questions can make or break the deployment of an ML product.
For example, recently, AI research lab OpenAIlaunched a test version of their Codex API model for public appraisal. But their launch failed because their servers couldnt scale to the user demand.
Hopefully, this brief post will help you better assess your machine learning project and avoid mistakes. Read Loness full paper, titled, How to avoid machine learning pitfalls: a guide for academic researchers, for more details about common mistakes in the ML research and development process.
This article was originally published by Ben Dickson onTechTalks, a publication that examines trends in technology, how they affect the way we live and do business, and the problems they solve. But we also discuss the evil side of technology, the darker implications of new tech, and what we need to look out for. You can read the original article here.
See the original post here:
The dos and donts of machine learning research read it, nerds - The Next Web
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]