The dos and donts of machine learning research read it, nerds – The Next Web
Did you know Neural is taking the stage this fall? Together with an amazing line-up of experts, we will explore the future of AI during TNW Conference 2021. Secure your ticket now!
Machine learning is becoming an important tool in many industries and fields of science. But ML research and product development present several challenges that, if not addressed, can steer your project in the wrong direction.
In a paper recently published on the arXiv preprint server, Michael Lones, Associate Professor in the School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, provides a list of dos and donts for machine learning research.
The paper, which Lones describes as lessons that were learnt whilst doing ML research in academia, and whilst supervising students doing ML research, covers the challenges of different stages of the machine learning research lifecycle. Although aimed at academic researchers, the papers guidelines are also useful for developers who are creating machine learning models for real-world applications.
Here are my takeaways from the paper, though I recommend anyone involved in machine learning research and development to read it in full.
Machine learning models live and thrive on data. Accordingly, across the paper, Lones reiterates the importance of paying extra attention to data across all stages of the machine learning lifecycle. You must be careful of how you gather and prepare your data and how you use it to train and test your machine learning models.
No amount of computation power and advanced technology can help you if your data doesnt come from a reliable source and hasnt been gathered in a reliable manner. And you should also use your own due diligence to check the provenance and quality of your data. Do not assume that, because a data set has been used by a number of papers, it is of good quality, Lones writes.
Your dataset might have various problems that can lead to your model learning the wrong thing.
For example, if youre working on a classification problem and your dataset contains too many examples of one class and too few of another, then the trained machine learning model might end up learning to predict every input as belonging to the stronger class. In this case, your dataset suffers from class imbalance.
While class imbalance can be spotted quickly with data exploration practices, finding other problems needs extra care and experience. For example, if all the pictures in your dataset were taken in daylight, then your machine learning model will perform poorly on dark photos. A more subtle example is the equipment used to capture the data. For instance, if youve taken all your training photos with the same camera, your model might end up learning to detect the unique visual footprint of your camera and will perform poorly on images taken with other equipment. Machine learning datasets can have all kinds of such biases.
The quantity of data is also an important issue. Make sure your data is available in enough abundance. If the signal is strong, then you can get away with less data; if its weak, then you need more data, Lones writes.
In some fields, the lack of data can be compensated for with techniques such as cross-validation and data augmentation. But in general, you should know that the more complex your machine learning model, the more training data youll need. For example, a few hundred training examples might be enough to train a simple regression model with a few parameters. But if you want to develop a deep neural network with millions of parameters, youll need much more training data.
Another important point Lones makes in the paper is the need to have a strong separation between training and test data. Machine learning engineers usually put aside part of their data to test the trained model. But sometimes, the test data leaks into the training process, which can lead to machine learning models that dont generalize to data gathered from the real world.
Dont allow test data to leak into the training process, he warns. The best thing you can do to prevent these issues is to partition off a subset of your data right at the start of your project, and only use this independent test set once to measure the generality of a single model at the end of the project.
In more complicated scenarios, youll need a validation set, a second test set that puts the machine learning model into a final evaluation process. For example, if youre doing cross-validation or ensemble learning, the original test might not provide a precise evaluation of your models. In this case, a validation set can be useful.
If you have enough data, its better to keep some aside and only use it once to provide an unbiased estimate of the final selected model instance, Lones writes.
Today, deep learning is all the rage. But not every problem needs deep learning. In fact, not every problem even needs machine learning. Sometimes, simple pattern-matching and rules will perform on par with the most complex machine learning models at a fraction of the data and computation costs.
But when it comes to problems that are specific to machine learning models, you should always have a roster of candidate algorithms to evaluate. Generally speaking, theres no such thing as a single best ML model, Lones writes. In fact, theres a proof of this, in the form of the No Free Lunch theorem, which shows that no ML approach is any better than any other when considered over every possible problem.
The first thing you should check is whether your model matches your problem type. For example, based on whether your intended output is categorical or continuous, youll need to choose the right machine learning algorithm along with the right structure. Data types (e.g., tabular data, images, unstructured text, etc.) can also be a defining factor in the class of model you use.
One important point Lones makes in his paper is the need to avoid excessive complexity. For example, if youre problem can be solved with a simple decision tree or regression model, theres no point in using deep learning.
Lones also warns against trying to reinvent the wheel. With machine learning being one of the hottest areas of research, theres always a solid chance that someone else has solved a problem that is similar to yours. In such cases, the wise thing to do would be to examine their work. This can save you a lot of time because other researchers have already faced and solved challenges that you will likely meet down the road.
To ignore previous studies is to potentially miss out on valuable information, Lones writes.
Examining papers and work by other researchers might also provide you with machine learning models that you can use and repurpose for your own problem. In fact, machine learning researchers often use each others models to save time and computational resources and start with a baseline trusted by the ML community.
Its important to avoid not invented here syndrome, i.e., only using models that have been invented at your own institution, since this may cause you to omit the best model for a particular problem, Lones warns.
Having a solid idea of what your machine learning model will be used for can greatly impact its development. If youre doing machine learning purely for academic purposes and to push the boundaries of science, then there might be no limits to the type of data or machine learning algorithms you can use. But not all academic work will remain confined in research labs.
[For] many academic studies, the eventual goal is to produce an ML model that can be deployed in a real world situation. If this is the case, then its worth thinking early on about how it is going to be deployed, Lones writes.
For example, if your model will be used in an application that runs on user devices and not on large server clusters, then you cant use large neural networks that require large amounts of memory and storage space. You must design machine learning models that can work in resource-constrained environments.
Another problem you might face is the need for explainability. In some domains, such as finance and healthcare, application developers are legally required to provide explanations of algorithmic decisions in case a user demands it. In such cases, using a black-box model might be impossible. For example, even though a deep neural network might give you a performance advantage, its lack of interpretability might make it useless. Instead, a more transparent model such as a decision tree might be a better choice even if it results in a performance hit. Alternatively, if deep learning is an absolute requirement for your application, then youll need to investigate techniques that can provide reliable interpretations of activations in the neural network.
As a machine learning engineer, you might not have precise knowledge of the requirements of your model. Therefore, it is important to talk to domain experts because they can help to steer you in the right direction and determine whether youre solving a relevant problem or not.
Failing to consider the opinion of domain experts can lead to projects which dont solve useful problems, or which solve useful problems in inappropriate ways, Lones writes.
For example, if you create a neural network that flags fraudulent banking transactions with very high accuracy but provides no explanation of its decision, then financial institutions wont be able to use it.
There are various ways to measure the performance of machine learning models, but not all of them are relevant to the problem youre solving.
For example, many ML engineers use the accuracy test to rate their models. The accuracy test measures the percent of correct predictions the model makes. This number can be misleading in some cases.
For example, consider a dataset of x-ray scans used to train a machine learning model for cancer detection. Your data is imbalanced, with 90 percent of the training examples flagged as benign and a very small number classified as malign. If your trained model scores 90 on the accuracy test, it might have just learned to label everything as benign. If used in a real-world application, this model can lead to missed cases with disastrous outcomes. In such a case, the ML team must use tests that are insensitive to class imbalance or use a confusion matrix to check other metrics. More recent techniques can provide a detailed measure of a models performance in various areas.
Based on the application, the ML developers might also want to measure several metrics. To return to the cancer detection example, in such a model, it might be important to reduce false negatives as much as possible even if it comes at the cost of lower accuracy or a slight increase in false positives. It is better to send a few people healthy people for diagnosis to the hospital than to miss critical cancer patients.
In his paper, Lones warns that when comparing several machine learning models for a problem, dont assume that bigger numbers do not necessarily mean better models. For example, performance differences might be due to your model being trained and tested on different partitions of your dataset or on entirely different datasets.
To really be sure of a fair comparison between two approaches, you should freshly implement all the models youre comparing, optimise each one to the same degree, carry out multiple evaluations and then use statistical tests to determine whether the differences in performance are significant, Lones writes.
Lones also warns not to overestimate the capabilities of your models in your reports. A common mistake is to make general statements that are not supported by the data used to train and evaluate models, he writes.
Therefore, any report of your models performance must also include the kind of data it was trained and tested on. Validating your model on multiple datasets can provide a more realistic picture of its capabilities, but you should still be wary of the kind of data errors we discussed earlier.
Transparency can also contribute greatly to other ML research. If you fully describe the architecture of your models as well as the training and validation process, other researchers that read your findings can use them in future work or even help point out potential flaws in your methodology.
Finally, aim for reproducibility. if you publish your source code and model implementations, you can provide the machine learning community with great tools in future work.
Interestingly, almost everything Lones wrote in his paper is also applicable to applied machine learning, the branch of ML that is concerned with integrating models into real products. However, I would like to add a few points that go beyond academic research and are important in real-world applications.
When it comes to data, machine learning engineers must consider an extra set of considerations before integrating them into products. Some include data privacy and security, user consent, and regulatory constraints. Many a company has fallen into trouble for mining user data without their consent.
Another important matter that ML engineers often forget in applied settings is model decay. Unlike academic research, machine learning models used in real-world applications must be retrained and updated regularly. As everyday data changes, machine learning models decay and their performance deteriorates. For example, as life habits changed in wake of the covid lockdown, ML systems that had been trained on old data started to fail and needed retraining. Likewise, language models need to be constantly updated as new trends appear and our speaking and writing habits change. These changes require the ML product team to devise a strategy for continued collection of fresh data and periodical retraining of their models.
Finally, integration challenges will be an important part of every applied machine learning project. How will your machine learning system interact with other applications currently running in your organization? Is your data infrastructure ready to be plugged into the machine learning pipeline? Does your cloud or server infrastructure support the deployment and scaling of your model? These kinds of questions can make or break the deployment of an ML product.
For example, recently, AI research lab OpenAIlaunched a test version of their Codex API model for public appraisal. But their launch failed because their servers couldnt scale to the user demand.
Hopefully, this brief post will help you better assess your machine learning project and avoid mistakes. Read Loness full paper, titled, How to avoid machine learning pitfalls: a guide for academic researchers, for more details about common mistakes in the ML research and development process.
This article was originally published by Ben Dickson onTechTalks, a publication that examines trends in technology, how they affect the way we live and do business, and the problems they solve. But we also discuss the evil side of technology, the darker implications of new tech, and what we need to look out for. You can read the original article here.
See the original post here:
The dos and donts of machine learning research read it, nerds - The Next Web
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]