Technology is shaping learning in higher education – McKinsey
The COVID-19 pandemic forced a shift to remote learning overnight for most higher-education students, starting in the spring of 2020. To complement video lectures and engage students in the virtual classroom, educators adopted technologies that enabled more interactivity and hybrid models of online and in-person activities. These tools changed learning, teaching, and assessment in ways that may persist after the pandemic. Investors have taken note. Edtech start-ups raised record amounts of venture capital in 2020 and 2021, and market valuations for bigger players soared.
A study conducted by McKinsey in 2021 found that to engage most effectively with students, higher-education institutions can focus on eight dimensionsof the learning experience. In this article, we describe the findings of a study of the learning technologies that can enable aspects of several of those eight dimensions (see sidebar Eight dimensions of the online learning experience).
In November 2021, McKinsey surveyed 600 faculty members and 800 students from public and private nonprofit colleges and universities in the United States, including minority-serving institutions, about the use and impact of eight different classroom learning technologies (Exhibit 1). (For more on the learning technologies analyzed in this research, see sidebar Descriptions of the eight learning technologies.) To supplement the survey, we interviewed industry experts and higher-education professionals who make decisions about classroom technology use. We discovered which learning tools and approaches have seen the highest uptake, how students and educators view them, the barriers to higher adoption, how institutions have successfully adopted innovative technologies, and the notable impacts on learning (for details about our methodology, see sidebar About the research).
Exhibit 1
Survey respondents reported a 19 percent average increase in overall use of these learning technologies since the start of the COVID-19 pandemic. Technologies that enable connectivity and community building, such as social mediainspired discussion platforms and virtual study groups, saw the biggest uptick in use49 percentfollowed by group work tools, which grew by 29 percent (Exhibit 2). These technologies likely fill the void left by the lack of in-person experiences more effectively than individual-focused learning tools such as augmented reality and virtual reality (AR/VR). Classroom interaction technologies such as real-time chatting, polling, and breakout room discussions were the most widely used tools before the pandemic and remain so; 67 percent of survey respondents said they currently use these tools in the classroom.
Exhibit 2
The shift to more interactive and diverse learning models will likely continue. One industry expert told us, The pandemic pushed the need for a new learning experience online. It recentered institutions to think about how theyll teach moving forward and has brought synchronous and hybrid learning into focus. Consequently, many US colleges and universities are actively investing to scale up their online and hybrid program offerings.
Some technologies lag behind in adoption. Tools enabling student progress monitoring, AR/VR, machine learningpowered teaching assistants (TAs), AI adaptive course delivery, and classroom exercises are currently used by less than half of survey respondents. Anecdotal evidence suggests that technologies such as AR/VR require a substantial investment in equipment and may be difficult to use at scale in classes with high enrollment. Our survey also revealed utilization disparities based on size. Small public institutions use machine learningpowered TAs, AR/VR, and technologies for monitoring student progress at double or more the rates of medium and large public institutions, perhaps because smaller, specialized schools can make more targeted and cost-effective investments. We also found that medium and large public institutions made greater use of connectivity and community-building tools than small public institutions (57 to 59 percent compared with 45 percent, respectively). Although the uptake of AI-powered tools was slower, higher-education experts we interviewed predict their use will increase; they allow faculty to tailor courses to each students progress, reduce their workload, and improve student engagement at scale (see sidebar Differences in adoption by type of institution observed in the research).
While many colleges and universities are interested in using more technologies to support student learning, the top three barriers indicated are lack of awareness, inadequate deployment capabilities, and cost (Exhibit 3).
Exhibit 3
More than 60 percent of students said that all the classroom learning technologies theyve used since COVID-19 began had improved their learning and grades (Exhibit 4). However, two technologies earned higher marks than the rest for boosting academic performance: 80 percent of students cited classroom exercises, and 71 percent cited machine learningpowered teaching assistants.
Exhibit 4
Although AR/VR is not yet widely used, 37 percent of students said they are most excited about its potential in the classroom. While 88 percent of students believe AR/VR will make learning more entertaining, just 5 percent said they think it will improve their ability to learn or master content (Exhibit 5). Industry experts confirmed that while there is significant enthusiasm for AR/VR, its ability to improve learning outcomes is uncertain. Some data look promising. For example, in a recent pilot study, students who used a VR tool to complete coursework for an introductory biology class improved their subject mastery by an average of two letter grades.
Exhibit 5
Faculty gave learning tools even higher marks than students did, for ease of use, engagement, access to course resources, and instructor connectivity. They also expressed greater excitement than students did for the future use of technologies. For example, while more than 30 percent of students expressed excitement for AR/VR and classroom interactions, more than 60 percent of faculty were excited about those, as well as machine learningpowered teaching assistants and AI adaptive technology.
Eighty-one percent or more of faculty said they feel the eight learning technology tools are a good investment of time and effort relative to the value they provide (Exhibit 6). Expert interviews suggest that employing learning technologies can be a strain on faculty members, but those we surveyed said this strain is worthwhile.
Exhibit 6
While faculty surveyed were enthusiastic about new technologies, experts we interviewed stressed some underlying challenges. For example, digital-literacy gaps have been more pronounced since the pandemic because it forced the near-universal adoption of some technology solutions, deepening a divide that was unnoticed when adoption was sporadic. More tech-savvy instructors are comfortable with interaction-engagement-focused solutions, while staff who are less familiar with these tools prefer content display and delivery-focused technologies.
According to experts we interviewed, learning new tools and features can bring on general fatigue. An associate vice president of e-learning at one university told us that faculty there found designing and executing a pilot study of VR for a computer science class difficult. Its a completely new way of instruction. . . . I imagine that the faculty using it now will not use it again in the spring. Technical support and training help. A chief academic officer of e-learning who oversaw the introduction of virtual simulations for nursing and radiography students said that faculty holdouts were permitted to opt out but not to delay the program. We structured it in a were doing this together way. People who didnt want to do it left, but we got a lot of support from vendors and training, which made it easy to implement simulations.
Despite the growing pains of digitizing the classroom learning experience, faculty and students believe there is a lot more they can gain. Faculty members are optimistic about the benefits, and students expect learning to stay entertaining and efficient. While adoption levels saw double-digit growth during the pandemic, many classrooms have yet to experience all the technologies. For institutions considering the investment, or those that have already started, there are several takeaways to keep in mind.
In an earlier article, we looked at the broader changes in higher education that have been prompted by the pandemic. But perhaps none has advanced as quickly as the adoption of digital learning tools. Faculty and students see substantial benefits, and adoption rates are a long way from saturation, so we can expect uptake to continue. Institutions that want to know how they stand in learning tech adoption can measure their rates and benchmark them against the averages in this article and use those comparisons to help them decide where they want to catch up or get ahead.
See more here:
Technology is shaping learning in higher education - McKinsey
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]