Reconstructing the Galactic merger history with machine learning – Astrobites
Title: Kraken reveals itself the merger history of the Milky Way reconstructed with the E-MOSAICS simulations
Authors: J. M. Diederik Kruijssen, Joel L. Pfeffer, Melanie Chevance, Ana Bonaca, Sebastian Trujillo-Gomez, Nate Bastian, Marta Reina-Campos, Robert A. Crain, and Meghan E. Hughes
First Authors Institution: Astronomisches Rechen-Institut, Zentrum fur Astronomie der Universitat Heidelberg
Status: Published in MNRAS [open access]
Just like archaeologists can trace the migration and assimilation of people in past societies, astronomers can reconstruct the assembly history of the Galaxy that we live in. In standard galaxy formation theory, galaxies like our Milky Way formed through the hierarchical merging of many smaller galaxies. According to this picture, some of the stars and star clusters in our Galaxy were not originally born here, but are immigrants that were brought into the Milky Way when their parent galaxy entered. Galactic archaeologists are developing techniques to trace back the origin of these galactic immigrants and reconstruct properties of the accreted galaxies. One avenue is through the stars that were left behind in a stream (see this Astrobite), but todays authors study where the star clusters in our galaxy come from.
Globular clusters consist of hundreds of thousands of tightly bound stars, and they are both ancient (billions of years old) and stable. When a satellite galaxy is accreted into the Milky Way, its globular clusters are likely to survive and migrate as a whole. This makes globular clusters excellent fossil records, because they preserve the metallicity of the environment in which they formed and carry this signature wherever they travel.
Astronomers can identify accreted globular clusters based on their age and metallicity. Figure 1, taken from todays paper, shows the observed age-metallicity relation for Milky Way globular clusters. The globular clusters on the main progenitor branch are clearly separated from those accreted from various satellite galaxies. The main progenitor of the Milky Way contains all the native stars and globular clusters that were not from satellite galaxies.
Figure 1. The age-metallicity distribution of Galactic globular clusters. In all panels, black points indicate globular clusters that formed in the Main progenitor while colored diamonds indicate globular clusters from each accreted satellite galaxy. The vertical line represents the inferred accretion time. Reproduced from Fig 3 in the paper.
The data points in Figure 1 only contain the observed properties of globular clusters, and there is no obvious connection to the satellite accretion events. To bridge this gap, the authors in todays paper make use of galaxy formation simulations. The E-MOSAICS simulations follow the co-formation and co-evolution of galaxies and their globular clusters, providing the crucial link between accretion history and globular cluster properties.
The authors train an artificial neural network to infer the progenitor galaxy that brought in a group of globular clusters. Specifically, the input parameters are the median and interquartile ranges (IQRs) of the globular cluster orbital radii, eccentricities, ages, and metallicities, and the networks can predict the accretion time and the galaxy stellar mass. The resulting neural network is applied to the globular clusters shown in Figure 1 and gives the accretion times as outputs.
After applying the artificial neural network, the reconstructed formation history of the Milky Way is shown in Figure 2. This figure is called a galaxy merger tree because each branch (black and grey lines) represents one accreted satellite galaxy, and the branches are ordered by their accretion times. Kraken was the first galaxy to be accreted, followed by the progenitor of the Helmi streams, Sequoia and Gaia-Enceladus, and finally Sagittarius.
Figure 2. Galaxy merger tree of the Milky Way. The main progenitor is denoted by the trunk of the tree, coloured by stellar mass. Black lines indicate the five identified (and likely most massive) satellites, with the shaded areas visualizing the probability distributions of the accretion times. The coloured circles indicate the stellar masses of the satellite galaxies at the time of accretion. The annotations list the minimum number of GCs brought in by each satellite. From left to right, the six images along the top of the figure indicate the identified progenitors, i.e. Sagittarius, Sequoia, Kraken, the Milky Ways Main progenitor, the progenitor of the Helmi streams, and Gaia-Enceladus. Reproduced from Fig 9 in the paper.
The main progenitor of the Milky Way is the trunk of the tree, and it grows in stellar mass each time it accretes a new galaxy. The thickness of the lines indicate the mass ratio of the accreted galaxy versus the main progenitor. As you can imagine, the more massive a satellite is, the more damage it causes when it combines with the Milky Way. In a minor merger (defined by mass ratios smaller than 1:4), the satellite is small enough for the Milky Way to comfortably absorb; however, in major mergers (where the two galaxies have comparable mass), both galaxies will be significantly disturbed and the Milky Way disk can even be destroyed. Luckily, the Milky Way never experienced a major merger according to the authors of todays paper. Among the minor mergers, Kraken was the most significant merging event that the Milky Way experienced, since it has the highest mass ratio at the time of accretion.
The authors tally up the total contribution of stellar mass and globular clusters from the accreted satellites. They find that only a few percent of the stellar mass and about 35-50% of globular clusters in the Milky Way were accreted. The rest formed inside the Milky Way. They conclude that the Milky Way had an unusually quiet formation history.
Todays paper uses globular clusters and artificial neural networks to reconstruct a detailed accretion history of our Galaxy. No Indiana Jones required for galactic archaeology!
Astrobite edited by Roan Haggar
Featured image credit: Diederik Kruijssen
About Zili ShenHi! I am a Ph.D. student in Astronomy at Yale University. My research focuses on ultra-diffuse galaxies and their globular cluster populations. Since I came to Yale, I have worked on two "dark-matter-free" galaxies NGC1052-DF2 and DF4. I have been coping with the pandemic and working from home by making sourdough bread and baking various cookies and cakes, reading books ranging from philosophy to virology, going on daily hikes or runs, and watching too many TV shows.
Read the rest here:
Reconstructing the Galactic merger history with machine learning - Astrobites
- Machine learning and generative AI: What are they good for in 2025? - MIT Sloan - June 4th, 2025 [June 4th, 2025]
- Researchers use machine learning to improve gene therapy - Stanford Report - June 4th, 2025 [June 4th, 2025]
- Machine learning for workpiece mass prediction using real and synthetic acoustic data - Nature - June 4th, 2025 [June 4th, 2025]
- Analyzing the Effect of Linguistic Similarity on Cross-Lingual Transfer: Tasks and Input Representations Matter - Apple Machine Learning Research - June 4th, 2025 [June 4th, 2025]
- Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury - Nature - June 4th, 2025 [June 4th, 2025]
- A machine learning approach to carbon emissions prediction of the top eleven emitters by 2030 and their prospects for meeting Paris agreement targets... - June 4th, 2025 [June 4th, 2025]
- Augmentation of wastewater-based epidemiology with machine learning to support global health surveillance - Nature - June 4th, 2025 [June 4th, 2025]
- Analysis of a nonsteroidal anti inflammatory drug solubility in green solvent via developing robust models based on machine learning technique -... - June 4th, 2025 [June 4th, 2025]
- Your DNA Is a Machine Learning Model: Its Already Out There - Towards Data Science - June 4th, 2025 [June 4th, 2025]
- Development and validation of a risk prediction model for kinesiophobia in postoperative lung cancer patients: an interpretable machine learning... - June 4th, 2025 [June 4th, 2025]
- Predicting long-term patency of radiocephalic arteriovenous fistulas with machine learning and the PREDICT-AVF web app - Nature - June 4th, 2025 [June 4th, 2025]
- How Machine Learning and Cascade Learning Open Doors of Advanced Automation - Supply & Demand Chain Executive - June 4th, 2025 [June 4th, 2025]
- New Hydrogenation Reaction Mechanism for Superhydride Revealed by Machine Learning - Asia Research News | - June 4th, 2025 [June 4th, 2025]
- AI experiences rapid adoption, but with mixed outcomes Highlights from VotE: AI & Machine Learning - S&P Global - June 4th, 2025 [June 4th, 2025]
- IIPE introduces online M.Tech in Data Science and Machine Learning for working professionals - India Today - June 4th, 2025 [June 4th, 2025]
- Introducing Windows ML: The future of machine learning development on Windows - Windows Blog - May 19th, 2025 [May 19th, 2025]
- Settlement strategies and their driving mechanisms of Neolithic settlements using machine learning approaches: a case study in Zhejiang Province -... - May 19th, 2025 [May 19th, 2025]
- MyWear revolutionizes real-time health monitoring with comparative analysis of machine learning - Nature - May 19th, 2025 [May 19th, 2025]
- Leveraging stacking machine learning models and optimization for improved cyberattack detection - Nature - May 19th, 2025 [May 19th, 2025]
- Predicting land suitability for wheat and barley crops using machine learning techniques - Nature - May 10th, 2025 [May 10th, 2025]
- AI and Machine Learning - Ribeiro Preto adopts Optibus to optimise public bus system - Smart Cities World - May 10th, 2025 [May 10th, 2025]
- Childrens Hospital Los Angeles Leads Development of First Machine Learning Tool to Predict Risk of Cisplatin-Induced Hearing Loss - Business Wire - May 10th, 2025 [May 10th, 2025]
- Google is using machine learning to help Android users avoid unwanted and dangerous notifications - BetaNews - May 10th, 2025 [May 10th, 2025]
- London School of Emerging Technology (LSET) Concludes International Workshop on Emerging AI & Machine Learning Innovation - Barchart.com - May 10th, 2025 [May 10th, 2025]
- Thermal performance, entropy generation, and machine learning insights of AlO-TiO hybrid nanofluids in turbulent flow - Nature - May 10th, 2025 [May 10th, 2025]
- Predicting the efficacy of bevacizumab on peritumoral edema based on imaging features and machine learning - Nature - May 10th, 2025 [May 10th, 2025]
- How AI and machine learning are supercharging video conferencing tools - European CEO - May 10th, 2025 [May 10th, 2025]
- The need for a risk-based approach to AI and machine learning in healthcare - Health Tech World - May 10th, 2025 [May 10th, 2025]
- Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus... - May 10th, 2025 [May 10th, 2025]
- Adversarial Machine Learning in Detecting Inauthentic Behavior on Social Platforms - AiThority - May 10th, 2025 [May 10th, 2025]
- Exploring crop health and its associations with fungal soil microbiome composition using machine learning applied to remote sensing data - Nature - May 10th, 2025 [May 10th, 2025]
- Trust-based model and machine learning improve forest fire detection system - International Fire & Safety Journal - May 10th, 2025 [May 10th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider Africa - May 5th, 2025 [May 5th, 2025]
- Recentive Analytics v. Fox: The Federal Circuit Provides Analysis on the Patent Eligibility of Machine Learning Claims - Mintz - May 5th, 2025 [May 5th, 2025]
- A machine learning engineer shares the rsums that landed her jobs at Meta and X and what she'd change if she applied again - Business Insider - May 5th, 2025 [May 5th, 2025]
- Enhancing urban resilience through machine learning-supported flood risk assessment: integrating flood susceptibility with building function... - May 5th, 2025 [May 5th, 2025]
- MicroAlgo Inc. Develops Classifier Auto-Optimization Technology Based on Variational Quantum Algorithms, Accelerating the Advancement of Quantum... - May 5th, 2025 [May 5th, 2025]
- Enhanced metal ion adsorption using ZnO-MXene nanocomposites with machine learning-based performance prediction - Nature - May 5th, 2025 [May 5th, 2025]
- Integrating SHAP analysis with machine learning to predict postpartum hemorrhage in vaginal births - BMC Pregnancy and Childbirth - May 5th, 2025 [May 5th, 2025]
- Machine learning provide new insights into how the brain responds to heroin use - News-Medical - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning and AI in Basic HIV Research: From Big Data Analysis to Large Language Models - UNC Gillings School of Global Public Health - May 2nd, 2025 [May 2nd, 2025]
- Machine learning brings new insights to cells role in addiction, relapse - University of Cincinnati - May 2nd, 2025 [May 2nd, 2025]
- UH/UC Researchers Use Machine Learning to Map Brain Changes from Heroin Addiction - University of Houston - May 2nd, 2025 [May 2nd, 2025]
- Machine Learning Algorithm Predicts Shiba Inu Price In May You Should See This - The Crypto Update - May 2nd, 2025 [May 2nd, 2025]
- Seerist partners with SOCOM to enhance AI and machine learning for special operations - Defence Industry Europe - May 2nd, 2025 [May 2nd, 2025]
- How machine learning can spark many discoveries in science and medicine - The Indian Express - April 30th, 2025 [April 30th, 2025]
- Machine learning frameworks to accurately estimate the adsorption of organic materials onto resin and biochar - Nature - April 30th, 2025 [April 30th, 2025]
- Gene Therapy Research Roundup: Gene Circuits and Controlling Capsids With Machine Learning - themedicinemaker.com - April 30th, 2025 [April 30th, 2025]
- Seerist and SOCOM Enter Five-Year CRADA to Advance AI and Machine Learning for Operations - PRWeb - April 30th, 2025 [April 30th, 2025]
- Machine learning models for estimating the overall oil recovery of waterflooding operations in heterogenous reservoirs - Nature - April 30th, 2025 [April 30th, 2025]
- Machine learning-based quantification and separation of emissions and meteorological effects on PM - Nature - April 30th, 2025 [April 30th, 2025]
- Protein interactions, network pharmacology, and machine learning work together to predict genes linked to mitochondrial dysfunction in hypertrophic... - April 30th, 2025 [April 30th, 2025]
- AQR Bets on Machine Learning as Asness Becomes AI Believer - Bloomberg.com - April 30th, 2025 [April 30th, 2025]
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]