Prompt engineering techniques and best practices: Learn by doing with Anthropic’s Claude 3 on Amazon Bedrock … – AWS Blog
You have likely already had the opportunity to interact with generative artificial intelligence (AI) tools (such as virtual assistants and chatbot applications) and noticed that you dont always get the answer you are looking for, and that achieving it may not be straightforward. Large language models (LLMs), the models behind the generative AI revolution, receive instructions on what to do, how to do it, and a set of expectations for their response by means of a natural language text called a prompt. The way prompts are crafted greatly impacts the results generated by the LLM. Poorly written prompts will often lead to hallucinations, sub-optimal results, and overall poor quality of the generated response, whereas good-quality prompts will steer the output of the LLM to the output we want.
In this post, we show how to build efficient prompts for your applications. We use the simplicity of Amazon Bedrock playgrounds and the state-of-the-art Anthropics Claude 3 family of models to demonstrate how you can build efficient prompts by applying simple techniques.
Prompt engineering is the process of carefully designing the prompts or instructions given to generative AI models to produce the desired outputs. Prompts act as guides that provide context and set expectations for the AI. With well-engineered prompts, developers can take advantage of LLMs to generate high-quality, relevant outputs. For instance, we use the following prompt to generate an image with the Amazon Titan Image Generation model:
An illustration of a person talking to a robot. The person looks visibly confused because he can not instruct the robot to do what he wants.
We get the following generated image.
Lets look at another example. All the examples in this post are run using Claude 3 Haiku in an Amazon Bedrock playground. Although the prompts can be run using any LLM, we discuss best practices for the Claude 3 family of models. In order to get access to the Claude 3 Haiku LLM on Amazon Bedrock, refer to Model access.
We use the following prompt:
Claude 3 Haikus response:
The request prompt is actually very ambiguous. 10 + 10 may have several valid answers; in this case, Claude 3 Haiku, using its internal knowledge, determined that 10 + 10 is 20. Lets change the prompt to get a different answer for the same question:
Claude 3 Haikus response:
The response changed accordingly by specifying that 10 + 10 is an addition. Additionally, although we didnt request it, the model also provided the result of the operation. Lets see how, through a very simple prompting technique, we can obtain an even more succinct result:
Claude 3 Haiku response:
Well-designed prompts can improve user experience by making AI responses more coherent, accurate, and useful, thereby making generative AI applications more efficient and effective.
The Claude 3 family is a set of LLMs developed by Anthropic. These models are built upon the latest advancements in natural language processing (NLP) and machine learning (ML), allowing them to understand and generate human-like text with remarkable fluency and coherence. The family is comprised of three models: Haiku, Sonnet, and Opus.
Haiku is the fastest and most cost-effective model on the market. It is a fast, compact model for near-instant responsiveness. For the vast majority of workloads, Sonnet is two times faster than Claude 2 and Claude 2.1, with higher levels of intelligence, and it strikes the ideal balance between intelligence and speedqualities especially critical for enterprise use cases. Opus is the most advanced, capable, state-of-the-art foundation model (FM) with deep reasoning, advanced math, and coding abilities, with top-level performance on highly complex tasks.
Among the key features of the models family are:
To learn more about the Claude 3 family, see Unlocking Innovation: AWS and Anthropic push the boundaries of generative AI together, Anthropics Claude 3 Sonnet foundation model is now available in Amazon Bedrock, and Anthropics Claude 3 Haiku model is now available on Amazon Bedrock.
As prompts become more complex, its important to identify its various parts. In this section, we present the components that make up a prompt and the recommended order in which they should appear:
The following is an example of a prompt that incorporates all the aforementioned elements:
In the following sections, we dive deep into Claude 3 best practices for prompt engineering.
For prompts that deal only with text, follow this set of best practices to achieve better results:
The Claude 3 family offers vision capabilities that can process images and return text outputs. Its capable of analyzing and understanding charts, graphs, technical diagrams, reports, and other visual assets. The following are best practices when working with images with Claude 3:
Consider the following example, which is an extraction of the picture a fine gathering (Author: Ian Kirck, https://en.m.wikipedia.org/wiki/File:A_fine_gathering_(8591897243).jpg).
We ask Claude 3 to count how many birds are in the image:
Claude 3 Haikus response:
In this example, we asked Claude to take some time to think and put its reasoning in an XML tag and the final answer in another. Also, we gave Claude time to think and clear instructions to pay attention to details, which helped Claude to provide the correct response.
Lets see an example with the following image:
In this case, the image itself is the prompt: Claude 3 Haikus response:
Lets look at the following example:
Prompt:
Claude 3 Haikus response:
Lets see an example. We pass to Claude the following map chart in image format (source: https://ourworldindata.org/co2-and-greenhouse-gas-emissions), then we ask about Japans greenhouse gas emissions.
Prompt:
Claude 3 Haikus response:
Lets see an example of narration with the following image (source: Sustainable Development Goals Report 2023, https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf):
Prompt:
Claude 3 Haikus response:
In this example, we were careful to control the content of the narration. We made sure Claude didnt mention any extra information or discuss anything it wasnt completely confident about. We also made sure Claude covered all the key details and numbers presented in the slide. This is very important because the information from the narration in text format needs to be precise and accurate in order to be used to respond to questions.
Information extraction is the process of automating the retrieval of specific information related to a specific topic from a collection of texts or documents. LLMs can extract information regarding attributes given a context and a schema. The kinds of documents that can be better analyzed with LLMs are resumes, legal contracts, leases, newspaper articles, and other documents with unstructured text.
The following prompt instructs Claude 3 Haiku to extract information from short text like posts on social media, although it can be used for much longer pieces of text like legal documents or manuals. In the following example, we use the color code defined earlier to highlight the prompt sections:
Claude 3 Haikus response:
The prompt incorporates the following best practices:
Retrieval Augmented Generation (RAG) is an approach in natural language generation that combines the strengths of information retrieval and language generation models. In RAG, a retrieval system first finds relevant passages or documents from a large corpus based on the input context or query. Then, a language generation model uses the retrieved information as additional context to generate fluent and coherent text. This approach aims to produce high-quality and informative text by using both the knowledge from the retrieval corpus and the language generation capabilities of deep learning models. To learn more about RAG, see What is RAG? and Question answering using Retrieval Augmented Generation with foundation models in Amazon SageMaker JumpStart.
The following prompt instructs Claude 3 Haiku to answer questions about a specific topic and use a context from the retrieved information. We use the color code defined earlier to highlight the prompt sections:
Claude 3 Haikus response:
The prompt incorporates the following best practices:
In this post, we explored best prompting practices and demonstrated how to apply them with the Claude 3 family of models. The Claude 3 family of models are the latest and most capable LLMs available from Anthropic.
We encourage you to try out your own prompts using Amazon Bedrock playgrounds on the Amazon Bedrock console, and try out the official Anthropic Claude 3 Prompt Engineering Workshop to learn more advanced techniques. You can send feedback to AWS re:Post for Amazon Bedrock or through your usual AWS Support contacts.
Refer to the following to learn more about the Anthropic Claude 3 family:
David Laredo is a Prototyping Architect at AWS, where he helps customers discover the art of the possible through disruptive technologies and rapid prototyping techniques. He is passionate about AI/ML and generative AI, for which he writes blog posts and participates in public speaking sessions all over LATAM. He currently leads the AI/ML experts community in LATAM.
Claudia Cortes is a Partner Solutions Architect at AWS, focused on serving Latin American Partners. She is passionate about helping partners understand the transformative potential of innovative technologies like AI/ML and generative AI, and loves to help partners achieve practical use cases. She is responsible for programs such as AWS Latam Black Belt, which aims to empower partners in the Region by equipping them with the necessary knowledge and resources.
Simn Crdova is a Senior Solutions Architect at AWS, focused on bridging the gap between AWS services and customer needs. Driven by an insatiable curiosity and passion for generative AI and AI/ML, he tirelessly explores ways to leverage these cutting-edge technologies to enhance solutions offered to customers.
Gabriel Velazquez is a Sr Generative AI Solutions Architect at AWS, he currently focuses on supporting Anthropic on go-to-market strategy. Prior to working in AI, Gabriel built deep expertise in the telecom industry where he supported the launch of Canadas first 4G wireless network. He now combines his expertise in connecting a nation with knowledge of generative AI to help customers innovate and scale.
Originally posted here:
Prompt engineering techniques and best practices: Learn by doing with Anthropic's Claude 3 on Amazon Bedrock ... - AWS Blog
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]