Prompt engineering techniques and best practices: Learn by doing with Anthropic’s Claude 3 on Amazon Bedrock … – AWS Blog
You have likely already had the opportunity to interact with generative artificial intelligence (AI) tools (such as virtual assistants and chatbot applications) and noticed that you dont always get the answer you are looking for, and that achieving it may not be straightforward. Large language models (LLMs), the models behind the generative AI revolution, receive instructions on what to do, how to do it, and a set of expectations for their response by means of a natural language text called a prompt. The way prompts are crafted greatly impacts the results generated by the LLM. Poorly written prompts will often lead to hallucinations, sub-optimal results, and overall poor quality of the generated response, whereas good-quality prompts will steer the output of the LLM to the output we want.
In this post, we show how to build efficient prompts for your applications. We use the simplicity of Amazon Bedrock playgrounds and the state-of-the-art Anthropics Claude 3 family of models to demonstrate how you can build efficient prompts by applying simple techniques.
Prompt engineering is the process of carefully designing the prompts or instructions given to generative AI models to produce the desired outputs. Prompts act as guides that provide context and set expectations for the AI. With well-engineered prompts, developers can take advantage of LLMs to generate high-quality, relevant outputs. For instance, we use the following prompt to generate an image with the Amazon Titan Image Generation model:
An illustration of a person talking to a robot. The person looks visibly confused because he can not instruct the robot to do what he wants.
We get the following generated image.
Lets look at another example. All the examples in this post are run using Claude 3 Haiku in an Amazon Bedrock playground. Although the prompts can be run using any LLM, we discuss best practices for the Claude 3 family of models. In order to get access to the Claude 3 Haiku LLM on Amazon Bedrock, refer to Model access.
We use the following prompt:
Claude 3 Haikus response:
The request prompt is actually very ambiguous. 10 + 10 may have several valid answers; in this case, Claude 3 Haiku, using its internal knowledge, determined that 10 + 10 is 20. Lets change the prompt to get a different answer for the same question:
Claude 3 Haikus response:
The response changed accordingly by specifying that 10 + 10 is an addition. Additionally, although we didnt request it, the model also provided the result of the operation. Lets see how, through a very simple prompting technique, we can obtain an even more succinct result:
Claude 3 Haiku response:
Well-designed prompts can improve user experience by making AI responses more coherent, accurate, and useful, thereby making generative AI applications more efficient and effective.
The Claude 3 family is a set of LLMs developed by Anthropic. These models are built upon the latest advancements in natural language processing (NLP) and machine learning (ML), allowing them to understand and generate human-like text with remarkable fluency and coherence. The family is comprised of three models: Haiku, Sonnet, and Opus.
Haiku is the fastest and most cost-effective model on the market. It is a fast, compact model for near-instant responsiveness. For the vast majority of workloads, Sonnet is two times faster than Claude 2 and Claude 2.1, with higher levels of intelligence, and it strikes the ideal balance between intelligence and speedqualities especially critical for enterprise use cases. Opus is the most advanced, capable, state-of-the-art foundation model (FM) with deep reasoning, advanced math, and coding abilities, with top-level performance on highly complex tasks.
Among the key features of the models family are:
To learn more about the Claude 3 family, see Unlocking Innovation: AWS and Anthropic push the boundaries of generative AI together, Anthropics Claude 3 Sonnet foundation model is now available in Amazon Bedrock, and Anthropics Claude 3 Haiku model is now available on Amazon Bedrock.
As prompts become more complex, its important to identify its various parts. In this section, we present the components that make up a prompt and the recommended order in which they should appear:
The following is an example of a prompt that incorporates all the aforementioned elements:
In the following sections, we dive deep into Claude 3 best practices for prompt engineering.
For prompts that deal only with text, follow this set of best practices to achieve better results:
The Claude 3 family offers vision capabilities that can process images and return text outputs. Its capable of analyzing and understanding charts, graphs, technical diagrams, reports, and other visual assets. The following are best practices when working with images with Claude 3:
Consider the following example, which is an extraction of the picture a fine gathering (Author: Ian Kirck, https://en.m.wikipedia.org/wiki/File:A_fine_gathering_(8591897243).jpg).
We ask Claude 3 to count how many birds are in the image:
Claude 3 Haikus response:
In this example, we asked Claude to take some time to think and put its reasoning in an XML tag and the final answer in another. Also, we gave Claude time to think and clear instructions to pay attention to details, which helped Claude to provide the correct response.
Lets see an example with the following image:
In this case, the image itself is the prompt: Claude 3 Haikus response:
Lets look at the following example:
Prompt:
Claude 3 Haikus response:
Lets see an example. We pass to Claude the following map chart in image format (source: https://ourworldindata.org/co2-and-greenhouse-gas-emissions), then we ask about Japans greenhouse gas emissions.
Prompt:
Claude 3 Haikus response:
Lets see an example of narration with the following image (source: Sustainable Development Goals Report 2023, https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf):
Prompt:
Claude 3 Haikus response:
In this example, we were careful to control the content of the narration. We made sure Claude didnt mention any extra information or discuss anything it wasnt completely confident about. We also made sure Claude covered all the key details and numbers presented in the slide. This is very important because the information from the narration in text format needs to be precise and accurate in order to be used to respond to questions.
Information extraction is the process of automating the retrieval of specific information related to a specific topic from a collection of texts or documents. LLMs can extract information regarding attributes given a context and a schema. The kinds of documents that can be better analyzed with LLMs are resumes, legal contracts, leases, newspaper articles, and other documents with unstructured text.
The following prompt instructs Claude 3 Haiku to extract information from short text like posts on social media, although it can be used for much longer pieces of text like legal documents or manuals. In the following example, we use the color code defined earlier to highlight the prompt sections:
Claude 3 Haikus response:
The prompt incorporates the following best practices:
Retrieval Augmented Generation (RAG) is an approach in natural language generation that combines the strengths of information retrieval and language generation models. In RAG, a retrieval system first finds relevant passages or documents from a large corpus based on the input context or query. Then, a language generation model uses the retrieved information as additional context to generate fluent and coherent text. This approach aims to produce high-quality and informative text by using both the knowledge from the retrieval corpus and the language generation capabilities of deep learning models. To learn more about RAG, see What is RAG? and Question answering using Retrieval Augmented Generation with foundation models in Amazon SageMaker JumpStart.
The following prompt instructs Claude 3 Haiku to answer questions about a specific topic and use a context from the retrieved information. We use the color code defined earlier to highlight the prompt sections:
Claude 3 Haikus response:
The prompt incorporates the following best practices:
In this post, we explored best prompting practices and demonstrated how to apply them with the Claude 3 family of models. The Claude 3 family of models are the latest and most capable LLMs available from Anthropic.
We encourage you to try out your own prompts using Amazon Bedrock playgrounds on the Amazon Bedrock console, and try out the official Anthropic Claude 3 Prompt Engineering Workshop to learn more advanced techniques. You can send feedback to AWS re:Post for Amazon Bedrock or through your usual AWS Support contacts.
Refer to the following to learn more about the Anthropic Claude 3 family:
David Laredo is a Prototyping Architect at AWS, where he helps customers discover the art of the possible through disruptive technologies and rapid prototyping techniques. He is passionate about AI/ML and generative AI, for which he writes blog posts and participates in public speaking sessions all over LATAM. He currently leads the AI/ML experts community in LATAM.
Claudia Cortes is a Partner Solutions Architect at AWS, focused on serving Latin American Partners. She is passionate about helping partners understand the transformative potential of innovative technologies like AI/ML and generative AI, and loves to help partners achieve practical use cases. She is responsible for programs such as AWS Latam Black Belt, which aims to empower partners in the Region by equipping them with the necessary knowledge and resources.
Simn Crdova is a Senior Solutions Architect at AWS, focused on bridging the gap between AWS services and customer needs. Driven by an insatiable curiosity and passion for generative AI and AI/ML, he tirelessly explores ways to leverage these cutting-edge technologies to enhance solutions offered to customers.
Gabriel Velazquez is a Sr Generative AI Solutions Architect at AWS, he currently focuses on supporting Anthropic on go-to-market strategy. Prior to working in AI, Gabriel built deep expertise in the telecom industry where he supported the launch of Canadas first 4G wireless network. He now combines his expertise in connecting a nation with knowledge of generative AI to help customers innovate and scale.
Originally posted here:
Prompt engineering techniques and best practices: Learn by doing with Anthropic's Claude 3 on Amazon Bedrock ... - AWS Blog
- Darktrace enhances Cyber AI Analyst with advanced machine learning for improved threat investigations - Industrial Cyber - April 21st, 2025 [April 21st, 2025]
- Infrared spectroscopy with machine learning detects early wood coating deterioration - Phys.org - April 21st, 2025 [April 21st, 2025]
- A simulation-driven computational framework for adaptive energy-efficient optimization in machine learning-based intrusion detection systems - Nature - April 21st, 2025 [April 21st, 2025]
- Machine learning model to predict the fitness of AAV capsids for gene therapy - EurekAlert! - April 21st, 2025 [April 21st, 2025]
- An integrated approach of feature selection and machine learning for early detection of breast cancer - Nature - April 21st, 2025 [April 21st, 2025]
- Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined... - April 21st, 2025 [April 21st, 2025]
- Autolomous CEO Discusses AI and Machine Learning Applications in Pharmaceutical Development and Manufacturing with Pharmaceutical Technology -... - April 21st, 2025 [April 21st, 2025]
- Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression - ACS Publications - April 21st, 2025 [April 21st, 2025]
- Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in... - April 21st, 2025 [April 21st, 2025]
- Machine learning-based differentiation of schizophrenia and bipolar disorder using multiscale fuzzy entropy and relative power from resting-state EEG... - April 12th, 2025 [April 12th, 2025]
- Increasing load factor in logistics and evaluating shipment performance with machine learning methods: A case from the automotive industry - Nature - April 12th, 2025 [April 12th, 2025]
- Machine learning-based prediction of the thermal conductivity of filling material incorporating steelmaking slag in a ground heat exchanger system -... - April 12th, 2025 [April 12th, 2025]
- Do LLMs Know Internally When They Follow Instructions? - Apple Machine Learning Research - April 12th, 2025 [April 12th, 2025]
- Leveraging machine learning in precision medicine to unveil organochlorine pesticides as predictive biomarkers for thyroid dysfunction - Nature - April 12th, 2025 [April 12th, 2025]
- Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning... - April 12th, 2025 [April 12th, 2025]
- AI and Machine Learning - Bentley and Google partner to improve asset analytics - Smart Cities World - April 12th, 2025 [April 12th, 2025]
- Where to find the next Earth: Machine learning accelerates the search for habitable planets - Phys.org - April 10th, 2025 [April 10th, 2025]
- Concurrent spin squeezing and field tracking with machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- This AI Paper Introduces a Machine Learning Framework to Estimate the Inference Budget for Self-Consistency and GenRMs (Generative Reward Models) -... - April 10th, 2025 [April 10th, 2025]
- UCI researchers study use of machine learning to improve stroke diagnosis, access to timely treatment - UCI Health - April 10th, 2025 [April 10th, 2025]
- Assessing dengue forecasting methods: a comparative study of statistical models and machine learning techniques in Rio de Janeiro, Brazil - Tropical... - April 10th, 2025 [April 10th, 2025]
- Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases - Nature - April 10th, 2025 [April 10th, 2025]
- How AI, Data Science, And Machine Learning Are Shaping The Future - Forbes - April 10th, 2025 [April 10th, 2025]
- Development and validation of interpretable machine learning models to predict distant metastasis and prognosis of muscle-invasive bladder cancer... - April 10th, 2025 [April 10th, 2025]
- From fax machines to machine learning: The fight for efficiency - HME News - April 10th, 2025 [April 10th, 2025]
- Carbon market and emission reduction: evidence from evolutionary game and machine learning - Nature - April 10th, 2025 [April 10th, 2025]
- Infleqtion Unveils Contextual Machine Learning (CML) at GTC 2025, Powering AI Breakthroughs with NVIDIA CUDA-Q and Quantum-Inspired Algorithms - Yahoo... - March 22nd, 2025 [March 22nd, 2025]
- Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals -... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning analysis of cardiovascular risk factors and their associations with hearing loss - Nature.com - March 22nd, 2025 [March 22nd, 2025]
- Weekly Recap: Dual-Cure Inks, AI And Machine Learning Top This Weeks Stories - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of... - March 22nd, 2025 [March 22nd, 2025]
- Machine learning aids in detection of 'brain tsunamis' - University of Cincinnati - March 22nd, 2025 [March 22nd, 2025]
- AI & Machine Learning in Database Management: Studying Trends and Applications with Nithin Gadicharla - Tech Times - March 22nd, 2025 [March 22nd, 2025]
- MicroRNA Biomarkers and Machine Learning for Hypertension Subtyping - Physician's Weekly - March 22nd, 2025 [March 22nd, 2025]
- Machine Learning Pioneer Ramin Hasani Joins Info-Tech's "Digital Disruption" Podcast to Explore the Future of AI and Liquid Neural Networks... - March 22nd, 2025 [March 22nd, 2025]
- Predicting HIV treatment nonadherence in adolescents with machine learning - News-Medical.Net - March 22nd, 2025 [March 22nd, 2025]
- AI And Machine Learning In Ink And Coatings Formulation - Ink World Magazine - March 22nd, 2025 [March 22nd, 2025]
- Counting whales by eavesdropping on their chatter, with help from machine learning - Mongabay.com - March 22nd, 2025 [March 22nd, 2025]
- Associate Professor - Artificial Intelligence and Machine Learning job with GALGOTIAS UNIVERSITY | 390348 - Times Higher Education - March 22nd, 2025 [March 22nd, 2025]
- Innovative Machine Learning Tool Reveals Secrets Of Marine Microbial Proteins - Evrim Aac - March 22nd, 2025 [March 22nd, 2025]
- Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene... - March 22nd, 2025 [March 22nd, 2025]
- Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations -... - March 22nd, 2025 [March 22nd, 2025]
- 'We want them to be the creators': Karlie Kloss' coding nonprofit offering free AI and machine learning workshop this weekend - KSDK.com - March 22nd, 2025 [March 22nd, 2025]
- New headset reads minds and uses AR, AI and machine learning to help people with locked-in-syndrome communicate with loved ones again - PC Gamer - March 22nd, 2025 [March 22nd, 2025]
- Enhancing cybersecurity through script development using machine and deep learning for advanced threat mitigation - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning-assisted wearable sensing systems for speech recognition and interaction - Nature.com - March 11th, 2025 [March 11th, 2025]
- Machine learning uncovers complexity of immunotherapy variables in bladder cancer - Hospital Healthcare - March 11th, 2025 [March 11th, 2025]
- Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye - The University of Rhode Island - March 11th, 2025 [March 11th, 2025]
- Precision soil sampling strategy for the delineation of management zones in olive cultivation using unsupervised machine learning methods - Nature.com - March 11th, 2025 [March 11th, 2025]
- AI in Esports: How Machine Learning is Transforming Anti-Cheat Systems in Esports - Jumpstart Media - March 11th, 2025 [March 11th, 2025]
- Whats that microplastic? Advances in machine learning are making identifying plastics in the environment more reliable - The Conversation Indonesia - March 11th, 2025 [March 11th, 2025]
- Application of machine learning techniques in GlaucomAI system for glaucoma diagnosis and collaborative research support - Nature.com - March 11th, 2025 [March 11th, 2025]
- Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding - Nature.com - March 11th, 2025 [March 11th, 2025]
- Hugging Face Tutorial: Unleashing the Power of AI and Machine Learning - - March 11th, 2025 [March 11th, 2025]
- Utilizing Machine Learning to Predict Host Stars and the Key Elemental Abundances of Small Planets - Astrobiology News - March 11th, 2025 [March 11th, 2025]
- AI to the rescue: Study shows machine learning predicts long term recovery for anxiety with 72% accuracy - Hindustan Times - March 11th, 2025 [March 11th, 2025]
- New in 2025.3: Reducing false positives with Machine Learning - Emsisoft - March 5th, 2025 [March 5th, 2025]
- Abnormal FX Returns And Liquidity-Based Machine Learning Approaches - Seeking Alpha - March 5th, 2025 [March 5th, 2025]
- Sentiment analysis of emoji fused reviews using machine learning and Bert - Nature.com - March 5th, 2025 [March 5th, 2025]
- Detection of obstetric anal sphincter injuries using machine learning-assisted impedance spectroscopy: a prospective, comparative, multicentre... - March 5th, 2025 [March 5th, 2025]
- JFrog and Hugging Face team to improve machine learning security and transparency for developers - SDxCentral - March 5th, 2025 [March 5th, 2025]
- Opportunistic access control scheme for enhancing IoT-enabled healthcare security using blockchain and machine learning - Nature.com - March 5th, 2025 [March 5th, 2025]
- AI and Machine Learning Operationalization Software Market Hits New High | Major Giants Google, IBM, Microsoft - openPR - March 5th, 2025 [March 5th, 2025]
- FICO secures new patents in AI and machine learning technologies - Investing.com - March 5th, 2025 [March 5th, 2025]
- Study on landslide hazard risk in Wenzhou based on slope units and machine learning approaches - Nature.com - March 5th, 2025 [March 5th, 2025]
- NVIDIA Is Finding Great Success With Vulkan Machine Learning - Competitive With CUDA - Phoronix - March 3rd, 2025 [March 3rd, 2025]
- MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival - Nature.com - March 3rd, 2025 [March 3rd, 2025]
- AI and Machine Learning - Identifying meaningful use cases to fulfil the promise of AI in cities - SmartCitiesWorld - March 3rd, 2025 [March 3rd, 2025]
- Prediction of contrast-associated acute kidney injury with machine-learning in patients undergoing contrast-enhanced computed tomography in emergency... - March 3rd, 2025 [March 3rd, 2025]
- Predicting Ag Harvest using ArcGIS and Machine Learning - Esri - March 1st, 2025 [March 1st, 2025]
- Seeing Through The Hype: The Difference Between AI And Machine Learning In Marketing - AdExchanger - March 1st, 2025 [March 1st, 2025]
- Machine Learning Meets War Termination: Using AI to Explore Peace Scenarios in Ukraine - Center for Strategic & International Studies - March 1st, 2025 [March 1st, 2025]
- Statistical and machine learning analysis of diesel engines fueled with Moringa oleifera biodiesel doped with 1-hexanol and Zr2O3 nanoparticles |... - March 1st, 2025 [March 1st, 2025]
- Spatial analysis of air pollutant exposure and its association with metabolic diseases using machine learning - BMC Public Health - March 1st, 2025 [March 1st, 2025]
- The Evolution of AI in Software Testing: From Machine Learning to Agentic AI - CSRwire.com - March 1st, 2025 [March 1st, 2025]
- Wonder Dynamics Helps Boxel Studio Embrace Machine Learning and AI - Animation World Network - March 1st, 2025 [March 1st, 2025]
- Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study... - March 1st, 2025 [March 1st, 2025]
- Workplace Predictions: AI, Machine Learning To Transform Operations In 2025 - Facility Executive Magazine - March 1st, 2025 [March 1st, 2025]
- Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire - Nature.com - March 1st, 2025 [March 1st, 2025]