Prediction of ciprofloxacin resistance in hospitalized patients using machine learning | Communications Medicine – Nature.com
Smith, R. A., Mikanatha, N. M. & Read, A. F. Antibiotic resistance: A primer and call to action. Health Commun 30, 309314 (2015).
Article PubMed Google Scholar
Palumbi, S. R. Humans as the worlds greatest evolutionary force. Science 293, 17861790 (2001).
Article CAS PubMed Google Scholar
Weber, D. J. Collateral damage and what the future might hold. The need to balance prudent antibiotic utilization and stewardship with effective patient management. Int. J. Infect. Dis. 10, S17S24 (2006).
Article CAS Google Scholar
Carrara, E., Pfeffer, I., Zusman, O., Leibovici, L. & Paul, M. Determinants of inappropriate empirical antibiotic treatment: systematic review and meta-analysis. Int. J. Antimicrob. Agents 51, 548553 (2018).
Article CAS PubMed Google Scholar
World Health Organization. Executive summary: the selection and use of essential medicines 2019: report of the 22nd WHO Expert Committee on the selection and use of essential medicines: WHO Headquarters, Geneva, 1-5 April 2019. https://apps.who.int/iris/handle/10665/325773 (2019).
Chowers, M. et al. Estimating the impact of cefuroxime versus cefazolin and amoxicillin/clavulanate use on future collateral resistance: a retrospective comparison. J. Antimicrob. Chemother 77, 19921995 (2022).
Article CAS PubMed Google Scholar
Nathwani, D. et al. Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrob. Resist. Infect. Control 8, 113 (2019).
Article Google Scholar
Tribble, A. C. et al. Appropriateness of antibiotic prescribing in United States childrens hospitals: a national point prevalence survey. Clin. Infect. Dis 71, e226e234 (2020).
Article PubMed Google Scholar
eEML - Electronic Essential Medicines List. https://list.essentialmeds.org/.
Loscalzo, J. et al. Harrisons Principles of Internal Medicine, (Vol. 1 & Vol. 2). (McGraw Hill Professional, 2022).
Sharma, P. C., Jain, A., Jain, S., Pahwa, R. & Yar, M. S. Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J. Enzyme Inhib. Med. Chem. 25, 577589 (2010).
Article CAS PubMed Google Scholar
Thomson, C. J. The global epidemiology of resistance to ciprofloxacin and the changing nature of antibiotic resistance: a 10 year perspective. J. Antimicrob. Chemother. 43, 3140 (1999).
Article CAS PubMed Google Scholar
Organization, W. H. Global antimicrobial resistance and use surveillance system (GLASS) report: 2021. (2021).
Dalhoff, A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip. Perspect. Infect. Dis. 2012, 976273 (2012).
Article PubMed PubMed Central Google Scholar
Low, M. et al. Association between urinary community-acquired fluoroquinolone-resistant Escherichia coli and neighbourhood antibiotic consumption: a population-based case-control study. Lancet Infect. Dis. 19, 419428 (2019).
Article CAS PubMed Google Scholar
Eliopoulos, G. M., Cosgrove, S. E. & Carmeli, Y. The impact of antimicrobial resistance on health and economic outcomes. Clin. Infect. Dis 36, 14331437 (2003).
Article Google Scholar
Gottesman, B. S., Carmeli, Y., Shitrit, P. & Chowers, M. Impact of quinolone restriction on resistance patterns of Escherichia coli isolated from urine by culture in a community setting. Clin. Infect. Dis. 49, 869875 (2009).
Article CAS PubMed Google Scholar
Anahtar, M. N., Yang, J. H. & Kanjilal, S. Applications of machine learning to the problem of antimicrobial resistance: an emerging model for translational research. J. Clin. Microbiol. 59, e0126020 (2021).
Article CAS PubMed PubMed Central Google Scholar
Rawson, T. M., Ahmad, R., Toumazou, C., Georgiou, P. & Holmes, A. H. Artificial intelligence can improve decision-making in infection management. Nat. Hum. Behav. 3, 543545 (2019).
Article PubMed Google Scholar
Yelin, I. et al. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med. 25, 11431152 (2019).
Article CAS PubMed PubMed Central Google Scholar
Feretzakis, G. et al. Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece. Antibiotics 9, 50 (2020).
Article CAS PubMed PubMed Central Google Scholar
Dan, S. et al. Prediction of fluoroquinolone resistance in gram-negative bacteria causing bloodstream infections. Antimicrob. Agents Chemother. 60, 22652272 (2016).
Article CAS PubMed PubMed Central Google Scholar
Dickstein, Y., Geffen, Y., Andreassen, S., Leibovici, L. & Paul, M. Predicting antibiotic resistance in urinary tract infection patients with prior urine cultures. Antimicrob. Agents Chemother. 60, 47174721 (2016).
Article CAS PubMed PubMed Central Google Scholar
Binuya, M. A. E., Engelhardt, E. G., Schats, W., Schmidt, M. K. & Steyerberg, E. W. Methodological guidance for the evaluation and updating of clinical prediction models: a systematic review. BMC Med. Res. Methodol. 22, 114 (2022).
Article Google Scholar
Staffa, S. J. & Zurakowski, D. Statistical development and validation of clinical prediction models. Anesthesiology 135, 396405 (2021).
Article PubMed Google Scholar
de Hond, A. A. et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. Npj Digit. Med. 5, 113 (2022).
Google Scholar
Debray, T. P. et al. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J. Clin. Epidemiol. 68, 279289 (2015).
Article PubMed Google Scholar
Eilers, P. H. C., Boer, J. M., van Ommen G. J. & van Houwelingen, H. C. Classification of microarray data with penalized logistic regression. in Microarrays: Optical Technologies and Informatics vol. 4266 187198 (International Society for Optics and Photonics, 2001).
Friedman, J., Hastie, T. & Tibshirani, R. The Elements of Statistical Learning. vol. 1 (Springer series in statistics New York, 2001).
Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281305 (2012).
Google Scholar
Sill, J., Takcs, G., Mackey, L. & Lin, D. Feature-weighted linear stacking. ArXiv Prepr. arXiv:0911.0460 (2009).
Van der Laan, M. J., Polley, E. C. & Hubbard, A. E. Super learner. Stat. Appl. Genet. Mol. Biol. 6 (2007).
Lundberg, S. M. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 47654774 (Curran Associates, Inc., 2017).
Vickers, A. J. & Elkin, E. B. Decision curve analysis: a novel method for evaluating prediction models. Med. Decis. Mak. 26, 565574 (2006).
Article Google Scholar
Kerr, K. F., Brown, M. D., Zhu, K. & Janes, H. Assessing the clinical impact of risk prediction models with decision curves: guidance for correct interpretation and appropriate use. J. Clin. Oncol. 34, 2534 (2016).
Article PubMed PubMed Central Google Scholar
Python Software Foundation. Python programming language. https://www.python.org/.
NumPy Developers. NumPy: Scientific computing with Python. https://numpy.org/doc/stable/.
Pandas Developers. Pandas: Powerful data structures for data analysis and manipulation. https://pandas.pydata.org/.
Scikit-learn developers. Scikit-learn: Machine learning in Python. https://scikit-learn.org/stable/.
XGBoost: Scalable, distributed gradient boosting. https://xgboost.readthedocs.io/en/latest/.
TensorFlow Developers. TensorFlow: An end-to-end open source machine learning platform. https://www.tensorflow.org/.
Matplotlib: A comprehensive library for static, animated, and interactive visualizations in Python. https://matplotlib.org/stable/.
SHAP Developers. SHAP: A unified approach to explain the output of any machine learning model. https://shap.readthedocs.io/en/latest/.
Gallini, A. et al. Influence of fluoroquinolone consumption in inpatients and outpatients on ciprofloxacin-resistant Escherichia coli in a university hospital. J. Antimicrob. Chemother. 65, 26502657 (2010).
Article CAS PubMed Google Scholar
Wang, T. et al. Predicting Antimicrobial Resistance in the Intensive Care Unit. ArXiv Prepr. ArXiv211103575 (2021).
Wojcik, G. et al. Understanding the complexities of antibiotic prescribing behaviour in acute hospitals: a systematic review and meta-ethnography. Arch. Public Health 79, 119 (2021).
Article Google Scholar
Diamant, M. et al. A game theoretic approach reveals that discretizing clinical information can reduce antibiotic misuse. Nat. Commun. 12, 113 (2021).
Article Google Scholar
Shapley, L. S. A value for n-person games. Contrib. Theory Games 2, 307317 (1953).
Google Scholar
Kumar, I. E., Venkatasubramanian, S., Scheidegger, C. & Friedler, S. Problems with Shapley-value-based explanations as feature importance measures. in International Conference on Machine Learning 54915500 (PMLR, 2020).
Chen, M. et al. Physician and Medical Student Attitudes Toward Clinical Artificial Intelligence: A Systematic Review with Cross-Sectional Survey. Available SSRN 4128867.
Mulder, M. et al. Risk factors for resistance to ciprofloxacin in community-acquired urinary tract infections due to Escherichia coli in an elderly population. J. Antimicrob. Chemother. 72, 281289 (2016).
Article PubMed Google Scholar
Arslan, H., Azap, . K., Ergnl, . & Timurkaynak, F. On behalf of the Urinary Tract Infection Study Group Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey. J. Antimicrob. Chemother. 56, 914918 (2005).
Article CAS PubMed Google Scholar
Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe 2, e545e554 (2021).
Article CAS PubMed PubMed Central Google Scholar
Cherny, S. S., Chowers, M. & Obolski, U. Patterns of antibiotic cross-resistance by bacterial sample source: a retrospective cohort study. medRxiv (2022).
Cherny, S. S. et al. Revealing antibiotic cross-resistance patterns in hospitalized patients through Bayesian network modelling. J. Antimicrob. Chemother 76, 239248 (2021).
Article CAS PubMed Google Scholar
Lewin-Epstein, O., Baruch, S., Hadany, L., Stein, G. & Obolski, U. Predicting antibiotic resistance in hospitalized patients by applying machine learning to electronic medical records. medRxiv 2020.06.03.20120535 https://doi.org/10.1101/2020.06.03.20120535. (2020)
Chatterjee, A. et al. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect. Dis. 18, e368e378 (2018).
Article CAS PubMed Google Scholar
Truong, W. R., Hidayat, L., Bolaris, M. A., Nguyen, L. & Yamaki, J. The antibiogram: Key considerations for its development and utilization. JAC-Antimicrob. Resist. 3, dlab060 (2021).
Article PubMed PubMed Central Google Scholar
Oonsivilai, M. et al. Using machine learning to guide targeted and locally-tailored empiric antibiotic prescribing in a childrens hospital in Cambodia. Wellcome Open Res. 3, 131 (2018).
Article PubMed PubMed Central Google Scholar
Bell, B. G., Schellevis, F., Stobberingh, E., Goossens, H. & Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 14, 125 (2014).
Article Google Scholar
Baraz, A., Chowers, M., Nevo, D. & Obolski, U. Stable temporal relationships as a first step towards causal inference: an application to antibiotic resistance. medRxiv (2022).
Fasugba, O., Gardner, A., Mitchell, B. G. & Mnatzaganian, G. Ciprofloxacin resistance in community-and hospital-acquired Escherichia coli urinary tract infections: a systematic review and meta-analysis of observational studies. BMC Infect. Dis. 15, 116 (2015).
Here is the original post:
Prediction of ciprofloxacin resistance in hospitalized patients using machine learning | Communications Medicine - Nature.com
- A longitudinal machine-learning approach to predicting nursing home closures in the U.S. - Nature - January 11th, 2026 [January 11th, 2026]
- Occams Razor in Machine Learning. The Power of Simplicity in a Complex World - DataDrivenInvestor - January 11th, 2026 [January 11th, 2026]
- Study Explores Use of Automated Machine Learning to Compare Frailty Indices in Predicting Spinal Surgery Outcomes - geneonline.com - January 11th, 2026 [January 11th, 2026]
- Hunting for "Oddballs" With Machine Learning: Detecting Anomalous Exoplanets Using a Deep-Learned Low-Dimensional Representation of Transit... - January 9th, 2026 [January 9th, 2026]
- A Machine Learning-Driven Electrophysiological Platform for Real-Time Tumor-Neural Interaction Analysis and Modulation - Nature - January 9th, 2026 [January 9th, 2026]
- Machine learning elucidates associations between oral microbiota and the decline of sweet taste perception during aging - Nature - January 9th, 2026 [January 9th, 2026]
- Prognostic model for pancreatic cancer based on machine learning of routine slides and transcriptomic tumor analysis - Nature - January 9th, 2026 [January 9th, 2026]
- Bidgely Redefines Energy AI in 2025: From Machine Learning to Agentic AI - galvnews.com - January 9th, 2026 [January 9th, 2026]
- Machine Learning in Pharmaceutical Industry Market Size Reach USD 26.2 Billion by 2031 - openPR.com - January 9th, 2026 [January 9th, 2026]
- Noise-resistant Qubit Control With Machine Learning Delivers Over 90% Fidelity - Quantum Zeitgeist - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Parshwanath Corporation Limited Uptick - Real-Time Stock Alerts & High Return Trading Ideas -... - January 9th, 2026 [January 9th, 2026]
- Machine Learning Models Forecast Imagicaaworld Entertainment Limited Uptick - Technical Resistance Breaks & Outstanding Capital Returns -... - January 2nd, 2026 [January 2nd, 2026]
- Cognitive visual strategies are associated with delivery accuracy in elite wheelchair curling: insights from eye-tracking and machine learning -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Covidh Technologies Limited Uptick - Earnings Forecast Updates & Small Investment Trading Plans -... - January 2nd, 2026 [January 2nd, 2026]
- Machine Learning Models Forecast Sri Adhikari Brothers Television Network Limited Uptick - Stock Split Announcements & Rapid Wealth Accumulation -... - January 2nd, 2026 [January 2nd, 2026]
- Army to ring in new year with new AI and machine learning career path for officers - Stars and Stripes - December 31st, 2025 [December 31st, 2025]
- Army launches AI and machine-learning career path for officers - Federal News Network - December 31st, 2025 [December 31st, 2025]
- AI and Machine Learning Transforming Business Operations, Strategy, and Growth AI - openPR.com - December 31st, 2025 [December 31st, 2025]
- New at Mouser: Infineon Technologies PSOC Edge Machine Learning MCUs for Robotics, Industrial, and Smart Home Applications - Business Wire - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast The Federal Bank Limited Uptick - Double Top/Bottom Patterns & Affordable Growth Trading - bollywoodhelpline.com - December 31st, 2025 [December 31st, 2025]
- Machine Learning Models Forecast Future Consumer Limited Uptick - Stock Valuation Metrics & Free Stock Market Beginner Guides - earlytimes.in - December 31st, 2025 [December 31st, 2025]
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]