Podcast: Machine Learning and Education The Badger Herald – The Badger Herald
Jeff Deiss 0:00Greetings, this is Jeff, director of the Badger Herald podcast. And today we have a very exciting episode were talking with Professor Kangwook Lee, part of the Electrical and Computer Engineering Department at the University of Wisconsin Madison. And were going to talk about his research on deep learning and recent developments in machine learning. And also a little bit about his influence on a popular test prep service called Riiid.
So, I originally saw your name in a New York Times article, about Riiid, which is a test prep service started by YJ Jang that uses deep learning to essentially better guide students towards more accurate test prep and just overall academic success. But we can get into that a little bit later. So first, if you want to introduce yourself, and just give a little background on your life.
Lee 1:18Alright, hi, Im Kangwook Lee. Again, Im assistant professor in the ECE department here. Came here in 2019, fall. So its been about three and a half years since I joined here. Ive been enjoying a lot, except the COVID. But everything is great. I mostly work on information theory, machine learning and deep learning in terms of research area. Before that, I did my PhD in Berkeley Masters and PhD in Berkeley. Before that, I was doing my undergrad studies in Korea, I grew up in Korea. So yeah, its been its been a while since I came to the United States. I did went back to Korea for three years for my military service, after my Ph.D., but yeah. So yeah, happy to meet you guys and talk about my research.
Deiss 2:09Of course, and thats the first question I have. So with any topic related to machine learning or information theory, even as someone who studied this at a pretty low level in school, it can be hard to wrap your head around some of these concepts, but maybe just in laymans terms, can you describe some of your recent research to give our listeners a better sense of what you do here at UW-Madison?
Lee 2:32Since I joined Madison, I worked on three different research topics. The first one was, how much data do we need to rely on machine learning? That one, I particularly studied the problem of recommendation where we have data from clients or customers, they provide their ratings on the different types of items. And from that kind of partially observed data. If you want to make recommendations for their future service, we should figure out how much data we need. So that kind of recommendation systems and algorithms was number one topic I worked on. The second topic I worked on was called trustworthy machine learning. So by trustworthy machine learning, I mean, machine learning algorithms are, in most cases, they are not fair. So they are not robust. And others are private, they used to leak private data that was used for training data. So there are many issues like this. And people started looking at how to solve this issue and make more robust, more fair, more or less more private algorithms. So those are the research topics I really liked working on in the last few years. I still work on them. Recently, I have started working on another research topic called large models. So large models are I guess you must have heard about like GPT, diffusion, models lips, those are the models that are becoming more and more popular, but we are lacking in theory in terms of how they work. So thats what I am surprised to see in this case.
Deiss 4:18Yeah, so I just wanted to ask you I often hear not necessarily in true academic papers, but just in the media, I hear about how some of these large models, especially if theyre convoluted, complicated neural networks or deep learning algorithms. Ive heard them described as a black box, where the actual mechanics of whats going on inside what what the algorithm is doing with the data is a little unclear from the outside, or as you have like a simple regression model. Its actually pretty easy to work out the math of what the algorithm is doing with the data but with a large model, is that the case and can describe a little bit about that black box problem that researchers have to deal with
Lee 4:57The black box aspect actually was for more general classes, lets say entire deep learning, you can say they are kind of blackbox. I, I think thats half correct, half incorrect, half incorrect in a sense that when we design those models, we have a particular goal that this, we want this to behave like this. So for instance, even if we call GPT, mostly are largely blackbox-ish, we still design the systems and algorithms such that it is good at predicting the next word. Thats, thats not something just came out out of box we designed such that it predicts the next word well, so. And thats what we are seeing in ChatGPT and OD GPT. So the, in terms of the operation or the final objective, they are doing what they people who designed wanted to do. So its less blackbox in that sense, however, how it actually works that well, I think thats the mysterious part, we couldnt expect how well it will work. But somehow it worked much better than what people expected. So explaining why thats the case. Thats an interesting research question. But thats what makes it a little black box-ish. Whats also very interesting to me is when it comes to GPT, and really large language models, while there is there are more mysterious things happening, going back to the first aspect. In fact, there are some interesting behaviors that people didnt intend to design. So things like incontext learning or future learning. Thats basically like, when you use GPT, you provide a few examples to the to the model, and the model is trying to learn some parents from the examples that are provided, which is a little bit beyond that what people used to expect from the model. So the model has some new properties or behaviors that we didnt design.
Deiss 7:00Yes, and I want to get back to ChatGPT for another perspective and a little bit, but one thing I saw that you were recently researching, I saw come up in interviews is about the straggler problem in machine learning. As far as I know, its where a certain I dont know if node is the correct term or just some part of the machine learning algorithm is so deficient that it brings down the performance of the whole algorithm as a whole. Can you describe a little bit about what the straggler problem is and the research youre doing on it?
Lee 7:29Yeah. So the straggler problem is, is a term that describes where you have a large cluster and your entire cluster is working on a particular task jointly. And if one of the nodes or machine within the cluster starts performing bad or starts producing wrong output or start behaving slower than the other, that the entire system is either getting wrong answers, or either they are becoming entirely very slow. So straggler problem basically means that you have a bigger system consisting of large workers, one of the few workers become very slow, or erroneous, the entire system becomes bad. Thats the phenomenon or the problem. This problem has been first observed in large data centers like Google or Facebook, about a decade ago, they were reporting that there are a few stragglers that make their entire data center really slow, and really bad in terms of the performances. So we started working on how to fix these problems using more principled approaches like information and coding theory, that are very related to large scale machine learning systems. Because large scale machine learning systems require cluster training, distributed training, that kind of stuff. So thats how its connected to distribute machine.
Deiss 8:57Very interesting stuff. I want to pivot away from your research for a little bit and just talk about how I originally heard about your name, like I said, In the beginning, I saw a New York Times article was about a test prep service. And why YJ Jang who started Riiid this test prep service, you said he was inspired by you to kind of use deep learning in his startup, whatever software he was originally creating, what is your relationship with him? And how did you influence them to utilize deep learning?
Lee 9:25Sure. Heres a friend of mine. He texted me with the link to the article is I was really interested to see that link to see the article. I met him about 10 years ago, when I was a student at Berkeley. He was also a student at Berkeley, but we didnt know each other. But we both participated in some some startup competetion over the weekend. So we had when we drove down to San Jose, where the startup competition was happening, and I didnt know him so I was on Find finding some other folks there. And we created a some demo and we gave a pitch. We won the second place, he won the first place.
Deiss 10:09Wow.
Lee 10:10So, and I was talking to him, Hey, where are you from? And he said he was from Berkeley. So Im from Berkeley. So I got to know him from there. I knew he was a really good businessman back then. But, but then we came back to Berkeley, we started talking more and more. And we had some idea of having a startup. So we had some ideas, we spent about six months developing business ideas, and also building some demos. It was also related to education. So its slightly different from what they are working on now. But eventually, we found that the business is really difficult to run. So we gave up. But after that, he started his own business. And he started asking me, Hey, I have this interesting problem. But I think machine learning could play a big role here. So he started sharing his business idea. And then that was the time when I was working on machine learning. In particular, I was working on recommendation system. And I was able to find the connection between the recommendation system, and what the problem they are working with the problem they are working on is students are working and spending so much time on prepping test. And they waste so much time on working on something they already know, efficient test prep is no different from not wasting time on watching some, something thats not yours on Netflix. So yeah, so thats the point where I started this kind of idea, sharing the sharing this idea with him. And in fact, deep learning was necessarily being used for recommendation system. So all these ideas I shared with him, and he made a great business out of it.
Deiss 11:54Yes, definitely. Obviously, test prep services like this are some ways in which machine learning and deep learning models could actually help educators. But in the media, and I see all the time, its all about ChatGPT all that I hear like every day, theres some new news about ChatGPT. And I think that actually the panel here at UW-Madison recently about students using this potentially to cheat on things that they didnt think you could cheat on before like having it write your essay for you and stuff. As an educator or someone connected to the education system here. Do you think that these chat bots pose a threat to traditional methods of teaching?
Lee 12:32My opinion, I would say no, I dont see much difference between the moment where we started having access to say calculators, or MATLAB, or Python, those are some things that we still exercise when we are in elementary school. In elementary schools we are supposed to do 12 plus 13 or 10 minus 5, youre still doing it. And of course, I mean, they can go home and to use calculator, and cheat. But we dont care. Because at some point, unless youre going to rely all those machines and devices to do entire your work, you have to do it on your own sometimes. And also you have to understand the principles behind those tasks. So for instance, essay writing is the biggest issues right now with ChatGPT. While I mean, you can always use ChatGPT without knowing anything about essay writing, and I think thats coming is going to be better and better way better this year. However, if you dont decide to not learn how to write essays, then you didnt you end up not knowing something thats really important in your life. So eventually people will choose to learn it anyway. And not cheat. In terms of how to fairly great them. Thats the problem. Yeah, I think grading is the issue. Entire education on breakout.
Deiss 14:01Yes, thats thats kind of the thing. In my opinion, I thought a similar thing where if a student is really good, and they want to improve, and they want to have that good grade on the final exam, whats whatever it is, theyre going to learn what they need to learn. But when it comes to grading individual assignments, I feel if something were it can write your essay for you, it throws the whole, the whole book out the window, where its like, how do I know how to grade things if I cant tell if someone wrote this by themselves for three days, or they put it into a chatbot essentially, regardless of ChatGPT kind of taking over the media and public discourse around machine learning. I often joke with my friends I say, if we think ChatGPT is cool, I dont know what like Google is cooking up in the back for 10 years. Who knows whats going to be here over the next decade? So in your opinion, are there more interesting developments in machine learning right now? People can expect to see and if so, what do you think they are?
Lee 14:56Yeah, but before we move on, I think Google also has a lot of interesting techniques and models, but they are just slower in terms of releasing them and adapting them. So well see, I think the recent announcement on part is super interesting. So well get to see more and more coming like that. So anyway, so talking about other interesting matters. Other than larger models, what also interests me, theres these are diffusion models, I guess, perhaps most have heard about, like data lead to where the model is where you provide text prompt and throw something for you. That was more or less fun, activities, because you couldnt do much with that, like textured image model. But I think the fundamental technique has been applied to many different domains. And now its being used for not just for images, but for audio music, something else like 3D assets, and things are going wider and wider. And we will probably see a moment where these things become really powerful and being used everywhere, basically. So I dont think we need to draw any diagrams by hands. When you create a PowerPoint, you just need to type, whatever you think, how it should look like. It should be able to draw everything for you. And any design problems any Ill say, think about web design, product design, things are going to be very different. Yeah.
Deiss 16:35Yes. I guess just to wrap it up, do people like to kind of fear monger about a lot of this stuff like this is going to destroy the job market, everyones going to be automated away? Thats just one thing I hear. But people people do have concerns about just the prevalence of machine learning thats kind of emerging in our lives. Do you have any concerns about whats going on right now, in the world of machine learning? Or do you think people might be a little too pessimistic?
Lee 17:03There are certainly I will say there are some certain jobs that are going to be less useful than now. Thats clearly a concern. However, for most jobs out there, I think, either they can be benefited from these models and tools, their productivity will become better. And they probably can make more money if they know how to use these tools better. However, for instance, lets say concept artist, or designers, for instance, talking about this diffusion models. At some point, these kind of automated models could become really good at doing almost a job almost as good as what theyre doing right now. And thats the point where its really tricky because either we were gonna see some two different markets, right now, if you go to pottery market, then there are handmade potteries. And factory made pottery is no one can distinguish, to be honest. Yeah, handmade pottery is even more unique. They have some slightly different ways of coloring, and it actually has a little bit of defects that made this handmade pottery is look even more unique and beautiful than the factory made ones. But back in the days, we used to appreciate factory made like pottery, no defect, completely symmetric. Thats what human couldnt make. But I think we are going that way. Because now models are going to be better at making perfect flawless architectures and designs. And probably what we will do as a human designers and artists have a little bit of I wouldnt call it flaws or defects, but well turn look like what machines can make. So maybe those two markets will emerge. And maybe those two markets will survive forever, like pottery market. So I dont know, I cannot expect what will happen, but Im still optimistic.
Deiss 19:05Awesome. I think thats a good end it off on a high note there. And thank you for coming to talk to me today on the Badger Herald podcast, and Im excited to see what you do next in your research.
Lee 19:14All right. Thank you. It was great talking to you.
Deiss 19:15Thank you so much.
Follow this link:
Podcast: Machine Learning and Education The Badger Herald - The Badger Herald
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]