Podcast: Machine Learning and Education The Badger Herald – The Badger Herald
Jeff Deiss 0:00Greetings, this is Jeff, director of the Badger Herald podcast. And today we have a very exciting episode were talking with Professor Kangwook Lee, part of the Electrical and Computer Engineering Department at the University of Wisconsin Madison. And were going to talk about his research on deep learning and recent developments in machine learning. And also a little bit about his influence on a popular test prep service called Riiid.
So, I originally saw your name in a New York Times article, about Riiid, which is a test prep service started by YJ Jang that uses deep learning to essentially better guide students towards more accurate test prep and just overall academic success. But we can get into that a little bit later. So first, if you want to introduce yourself, and just give a little background on your life.
Lee 1:18Alright, hi, Im Kangwook Lee. Again, Im assistant professor in the ECE department here. Came here in 2019, fall. So its been about three and a half years since I joined here. Ive been enjoying a lot, except the COVID. But everything is great. I mostly work on information theory, machine learning and deep learning in terms of research area. Before that, I did my PhD in Berkeley Masters and PhD in Berkeley. Before that, I was doing my undergrad studies in Korea, I grew up in Korea. So yeah, its been its been a while since I came to the United States. I did went back to Korea for three years for my military service, after my Ph.D., but yeah. So yeah, happy to meet you guys and talk about my research.
Deiss 2:09Of course, and thats the first question I have. So with any topic related to machine learning or information theory, even as someone who studied this at a pretty low level in school, it can be hard to wrap your head around some of these concepts, but maybe just in laymans terms, can you describe some of your recent research to give our listeners a better sense of what you do here at UW-Madison?
Lee 2:32Since I joined Madison, I worked on three different research topics. The first one was, how much data do we need to rely on machine learning? That one, I particularly studied the problem of recommendation where we have data from clients or customers, they provide their ratings on the different types of items. And from that kind of partially observed data. If you want to make recommendations for their future service, we should figure out how much data we need. So that kind of recommendation systems and algorithms was number one topic I worked on. The second topic I worked on was called trustworthy machine learning. So by trustworthy machine learning, I mean, machine learning algorithms are, in most cases, they are not fair. So they are not robust. And others are private, they used to leak private data that was used for training data. So there are many issues like this. And people started looking at how to solve this issue and make more robust, more fair, more or less more private algorithms. So those are the research topics I really liked working on in the last few years. I still work on them. Recently, I have started working on another research topic called large models. So large models are I guess you must have heard about like GPT, diffusion, models lips, those are the models that are becoming more and more popular, but we are lacking in theory in terms of how they work. So thats what I am surprised to see in this case.
Deiss 4:18Yeah, so I just wanted to ask you I often hear not necessarily in true academic papers, but just in the media, I hear about how some of these large models, especially if theyre convoluted, complicated neural networks or deep learning algorithms. Ive heard them described as a black box, where the actual mechanics of whats going on inside what what the algorithm is doing with the data is a little unclear from the outside, or as you have like a simple regression model. Its actually pretty easy to work out the math of what the algorithm is doing with the data but with a large model, is that the case and can describe a little bit about that black box problem that researchers have to deal with
Lee 4:57The black box aspect actually was for more general classes, lets say entire deep learning, you can say they are kind of blackbox. I, I think thats half correct, half incorrect, half incorrect in a sense that when we design those models, we have a particular goal that this, we want this to behave like this. So for instance, even if we call GPT, mostly are largely blackbox-ish, we still design the systems and algorithms such that it is good at predicting the next word. Thats, thats not something just came out out of box we designed such that it predicts the next word well, so. And thats what we are seeing in ChatGPT and OD GPT. So the, in terms of the operation or the final objective, they are doing what they people who designed wanted to do. So its less blackbox in that sense, however, how it actually works that well, I think thats the mysterious part, we couldnt expect how well it will work. But somehow it worked much better than what people expected. So explaining why thats the case. Thats an interesting research question. But thats what makes it a little black box-ish. Whats also very interesting to me is when it comes to GPT, and really large language models, while there is there are more mysterious things happening, going back to the first aspect. In fact, there are some interesting behaviors that people didnt intend to design. So things like incontext learning or future learning. Thats basically like, when you use GPT, you provide a few examples to the to the model, and the model is trying to learn some parents from the examples that are provided, which is a little bit beyond that what people used to expect from the model. So the model has some new properties or behaviors that we didnt design.
Deiss 7:00Yes, and I want to get back to ChatGPT for another perspective and a little bit, but one thing I saw that you were recently researching, I saw come up in interviews is about the straggler problem in machine learning. As far as I know, its where a certain I dont know if node is the correct term or just some part of the machine learning algorithm is so deficient that it brings down the performance of the whole algorithm as a whole. Can you describe a little bit about what the straggler problem is and the research youre doing on it?
Lee 7:29Yeah. So the straggler problem is, is a term that describes where you have a large cluster and your entire cluster is working on a particular task jointly. And if one of the nodes or machine within the cluster starts performing bad or starts producing wrong output or start behaving slower than the other, that the entire system is either getting wrong answers, or either they are becoming entirely very slow. So straggler problem basically means that you have a bigger system consisting of large workers, one of the few workers become very slow, or erroneous, the entire system becomes bad. Thats the phenomenon or the problem. This problem has been first observed in large data centers like Google or Facebook, about a decade ago, they were reporting that there are a few stragglers that make their entire data center really slow, and really bad in terms of the performances. So we started working on how to fix these problems using more principled approaches like information and coding theory, that are very related to large scale machine learning systems. Because large scale machine learning systems require cluster training, distributed training, that kind of stuff. So thats how its connected to distribute machine.
Deiss 8:57Very interesting stuff. I want to pivot away from your research for a little bit and just talk about how I originally heard about your name, like I said, In the beginning, I saw a New York Times article was about a test prep service. And why YJ Jang who started Riiid this test prep service, you said he was inspired by you to kind of use deep learning in his startup, whatever software he was originally creating, what is your relationship with him? And how did you influence them to utilize deep learning?
Lee 9:25Sure. Heres a friend of mine. He texted me with the link to the article is I was really interested to see that link to see the article. I met him about 10 years ago, when I was a student at Berkeley. He was also a student at Berkeley, but we didnt know each other. But we both participated in some some startup competetion over the weekend. So we had when we drove down to San Jose, where the startup competition was happening, and I didnt know him so I was on Find finding some other folks there. And we created a some demo and we gave a pitch. We won the second place, he won the first place.
Deiss 10:09Wow.
Lee 10:10So, and I was talking to him, Hey, where are you from? And he said he was from Berkeley. So Im from Berkeley. So I got to know him from there. I knew he was a really good businessman back then. But, but then we came back to Berkeley, we started talking more and more. And we had some idea of having a startup. So we had some ideas, we spent about six months developing business ideas, and also building some demos. It was also related to education. So its slightly different from what they are working on now. But eventually, we found that the business is really difficult to run. So we gave up. But after that, he started his own business. And he started asking me, Hey, I have this interesting problem. But I think machine learning could play a big role here. So he started sharing his business idea. And then that was the time when I was working on machine learning. In particular, I was working on recommendation system. And I was able to find the connection between the recommendation system, and what the problem they are working with the problem they are working on is students are working and spending so much time on prepping test. And they waste so much time on working on something they already know, efficient test prep is no different from not wasting time on watching some, something thats not yours on Netflix. So yeah, so thats the point where I started this kind of idea, sharing the sharing this idea with him. And in fact, deep learning was necessarily being used for recommendation system. So all these ideas I shared with him, and he made a great business out of it.
Deiss 11:54Yes, definitely. Obviously, test prep services like this are some ways in which machine learning and deep learning models could actually help educators. But in the media, and I see all the time, its all about ChatGPT all that I hear like every day, theres some new news about ChatGPT. And I think that actually the panel here at UW-Madison recently about students using this potentially to cheat on things that they didnt think you could cheat on before like having it write your essay for you and stuff. As an educator or someone connected to the education system here. Do you think that these chat bots pose a threat to traditional methods of teaching?
Lee 12:32My opinion, I would say no, I dont see much difference between the moment where we started having access to say calculators, or MATLAB, or Python, those are some things that we still exercise when we are in elementary school. In elementary schools we are supposed to do 12 plus 13 or 10 minus 5, youre still doing it. And of course, I mean, they can go home and to use calculator, and cheat. But we dont care. Because at some point, unless youre going to rely all those machines and devices to do entire your work, you have to do it on your own sometimes. And also you have to understand the principles behind those tasks. So for instance, essay writing is the biggest issues right now with ChatGPT. While I mean, you can always use ChatGPT without knowing anything about essay writing, and I think thats coming is going to be better and better way better this year. However, if you dont decide to not learn how to write essays, then you didnt you end up not knowing something thats really important in your life. So eventually people will choose to learn it anyway. And not cheat. In terms of how to fairly great them. Thats the problem. Yeah, I think grading is the issue. Entire education on breakout.
Deiss 14:01Yes, thats thats kind of the thing. In my opinion, I thought a similar thing where if a student is really good, and they want to improve, and they want to have that good grade on the final exam, whats whatever it is, theyre going to learn what they need to learn. But when it comes to grading individual assignments, I feel if something were it can write your essay for you, it throws the whole, the whole book out the window, where its like, how do I know how to grade things if I cant tell if someone wrote this by themselves for three days, or they put it into a chatbot essentially, regardless of ChatGPT kind of taking over the media and public discourse around machine learning. I often joke with my friends I say, if we think ChatGPT is cool, I dont know what like Google is cooking up in the back for 10 years. Who knows whats going to be here over the next decade? So in your opinion, are there more interesting developments in machine learning right now? People can expect to see and if so, what do you think they are?
Lee 14:56Yeah, but before we move on, I think Google also has a lot of interesting techniques and models, but they are just slower in terms of releasing them and adapting them. So well see, I think the recent announcement on part is super interesting. So well get to see more and more coming like that. So anyway, so talking about other interesting matters. Other than larger models, what also interests me, theres these are diffusion models, I guess, perhaps most have heard about, like data lead to where the model is where you provide text prompt and throw something for you. That was more or less fun, activities, because you couldnt do much with that, like textured image model. But I think the fundamental technique has been applied to many different domains. And now its being used for not just for images, but for audio music, something else like 3D assets, and things are going wider and wider. And we will probably see a moment where these things become really powerful and being used everywhere, basically. So I dont think we need to draw any diagrams by hands. When you create a PowerPoint, you just need to type, whatever you think, how it should look like. It should be able to draw everything for you. And any design problems any Ill say, think about web design, product design, things are going to be very different. Yeah.
Deiss 16:35Yes. I guess just to wrap it up, do people like to kind of fear monger about a lot of this stuff like this is going to destroy the job market, everyones going to be automated away? Thats just one thing I hear. But people people do have concerns about just the prevalence of machine learning thats kind of emerging in our lives. Do you have any concerns about whats going on right now, in the world of machine learning? Or do you think people might be a little too pessimistic?
Lee 17:03There are certainly I will say there are some certain jobs that are going to be less useful than now. Thats clearly a concern. However, for most jobs out there, I think, either they can be benefited from these models and tools, their productivity will become better. And they probably can make more money if they know how to use these tools better. However, for instance, lets say concept artist, or designers, for instance, talking about this diffusion models. At some point, these kind of automated models could become really good at doing almost a job almost as good as what theyre doing right now. And thats the point where its really tricky because either we were gonna see some two different markets, right now, if you go to pottery market, then there are handmade potteries. And factory made pottery is no one can distinguish, to be honest. Yeah, handmade pottery is even more unique. They have some slightly different ways of coloring, and it actually has a little bit of defects that made this handmade pottery is look even more unique and beautiful than the factory made ones. But back in the days, we used to appreciate factory made like pottery, no defect, completely symmetric. Thats what human couldnt make. But I think we are going that way. Because now models are going to be better at making perfect flawless architectures and designs. And probably what we will do as a human designers and artists have a little bit of I wouldnt call it flaws or defects, but well turn look like what machines can make. So maybe those two markets will emerge. And maybe those two markets will survive forever, like pottery market. So I dont know, I cannot expect what will happen, but Im still optimistic.
Deiss 19:05Awesome. I think thats a good end it off on a high note there. And thank you for coming to talk to me today on the Badger Herald podcast, and Im excited to see what you do next in your research.
Lee 19:14All right. Thank you. It was great talking to you.
Deiss 19:15Thank you so much.
Follow this link:
Podcast: Machine Learning and Education The Badger Herald - The Badger Herald
- RIT researchers use machine learning to better understand the pathways of disease - Rochester Institute of Technology - October 7th, 2025 [October 7th, 2025]
- Leveraging machine learning to predict mosquito bed net utilization among women of reproductive age in sub-Saharan Africa - Malaria Journal - October 7th, 2025 [October 7th, 2025]
- Machine learning-based radiomics using magnetic resonance images for prediction of clinical complete response to neoadjuvant chemotherapy in patients... - October 7th, 2025 [October 7th, 2025]
- Machine Learning Self Driving Cars: The Technology Driving the Future of Mobility - SpeedwayMedia.com - October 7th, 2025 [October 7th, 2025]
- Investigating the relationship between blood factors and HDL-C levels in the bloodstream using machine learning methods - Journal of Health,... - October 7th, 2025 [October 7th, 2025]
- AI in the fast lane: F1 teams Alpine, Audi use machine learning as force multiplier - The Business Times - October 7th, 2025 [October 7th, 2025]
- Future Scope of Machine Learning in Healthcare Market Set to Witness Significant Growth by 2025-2032 - openPR.com - October 7th, 2025 [October 7th, 2025]
- AI and Machine Learning - AI readiness and adoption toolkit launched - Smart Cities World - October 4th, 2025 [October 4th, 2025]
- Machine Learning Model UmamiPredict Developed to Forecast Savory Taste of Molecules and Peptides - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Machine Learning Boosts Crop Yield Predictions in Senegal - Bioengineer.org - October 4th, 2025 [October 4th, 2025]
- Machine learning-driven stability analysis of eco-friendly superhydrophobic graphene-based coatings on copper substrate - Nature - October 4th, 2025 [October 4th, 2025]
- Integrated machine learning analysis of proteomic and transcriptomic data identifies healing associated targets in diabetic wound repair - Nature - October 4th, 2025 [October 4th, 2025]
- Development and evaluation of a machine learning prediction model for short-term mortality in patients with diabetes or hyperglycemia at emergency... - October 4th, 2025 [October 4th, 2025]
- Fast and robust mixed gas identification and recognition using tree-based machine learning and sensor array response - Nature - October 4th, 2025 [October 4th, 2025]
- Estimation of sexual dimorphism of adult human mandibles of South Indian origin using non-metric parameters and machine learning classification... - October 4th, 2025 [October 4th, 2025]
- Cloud-Based Machine Learning Platforms Technologies Market Growth and Future Prospects - Precedence Research - October 4th, 2025 [October 4th, 2025]
- Machine Learning Framework Developed to Optimize Phosphorus Recovery in Hydrothermal Treatment of Livestock Manure - geneonline.com - October 4th, 2025 [October 4th, 2025]
- Unifying machine learning and interpolation theory via interpolating neural networks - Nature - October 2nd, 2025 [October 2nd, 2025]
- Anna: an open-source platform for real-time integration of machine learning classifiers with veterinary electronic health records - BMC Veterinary... - October 2nd, 2025 [October 2nd, 2025]
- The Future of Liver Health: Can Human Models and Machine Learning Reduce Disease Rates? - Technology Networks - October 2nd, 2025 [October 2nd, 2025]
- Machine Learning Radiomics Predicts Pancreatic Cancer Invasion - Bioengineer.org - October 2nd, 2025 [October 2nd, 2025]
- Next-generation COVID-19 detection using a metasurface biosensor with machine learning-enhanced refractive index sensing - Nature - October 2nd, 2025 [October 2nd, 2025]
- Machine learning-based models for screening of anemia and leukemia using features of complete blood count reports - Nature - October 2nd, 2025 [October 2nd, 2025]
- Estimating the peak age of chess players through statistical and machine learning techniques - Nature - October 2nd, 2025 [October 2nd, 2025]
- Optimizing water quality index using machine learning: a six-year comparative study in riverine and reservoir systems - Nature - October 2nd, 2025 [October 2nd, 2025]
- Physics-informed machine learning-based real-time long-horizon temperature fields prediction in metallic additive manufacturing - Nature - October 2nd, 2025 [October 2nd, 2025]
- The Silicon Revolution: How AI and Machine Learning Are Forging the Future of Semiconductor Manufacturing - FinancialContent - October 2nd, 2025 [October 2nd, 2025]
- Machine learning model for differentiating Pneumocystis jirovecii pneumonia from colonization and analyzing mortality risk in non-HIV patients using... - October 2nd, 2025 [October 2nd, 2025]
- Radiomics and Machine Learning Applied to CECT Scans Show Potential in Predicting Perineural Invasion in Pancreatic Cancer - geneonline.com - October 2nd, 2025 [October 2nd, 2025]
- Machine learning and response surface optimization to enhance diesel engine performance using milk scum biodiesel with alumina nanoparticles - Nature - October 2nd, 2025 [October 2nd, 2025]
- Landmark Patent Appeal Decision Strengthens Protection for AI and Machine Learning Innovations - The National Law Review - October 2nd, 2025 [October 2nd, 2025]
- Machine learning researchers and industry leaders gathering at Santa Clara University - Stories - News & Events - Santa Clara University - September 30th, 2025 [September 30th, 2025]
- Building better batteries with amorphous materials and machine learning - Tech Xplore - September 30th, 2025 [September 30th, 2025]
- Machine Learning-Supported Fragment Hit Expansion in Absence of X-Ray Structures - Evotec - September 30th, 2025 [September 30th, 2025]
- Machine learning model predicts which radiotherapy patients are most vulnerable to adverse side effects - Health Imaging - September 30th, 2025 [September 30th, 2025]
- How AI and Machine Learning Are Revolutionizing Laser Welding - Downbeach - September 30th, 2025 [September 30th, 2025]
- What if A.I. Doesnt Get Much Better Than This? - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Sex estimation from the sternum in Turkish population using various machine learning methods and deep neural networks - SpringerOpen - September 30th, 2025 [September 30th, 2025]
- Predictive AI Must Be Valuated But Rarely Is. Heres How To Do It - Machine Learning Week 2025 - September 30th, 2025 [September 30th, 2025]
- Interpretable machine learning incorporating major lithology for regional landslide warning in northern and eastern Guangdong - Nature - September 28th, 2025 [September 28th, 2025]
- Building Machine Learning Application with Django - KDnuggets - September 28th, 2025 [September 28th, 2025]
- Evaluating the use of body mass index change as a proxy for anorexia nervosa recovery: a machine learning perspective - Journal of Eating Disorders - September 28th, 2025 [September 28th, 2025]
- Prediction of cutting parameters and reduction of output parameters using machine learning in milling of Inconel 718 alloy - Nature - September 28th, 2025 [September 28th, 2025]
- How AI and machine learning are changing both retail and online casino experiences - Retail Technology Innovation Hub - September 28th, 2025 [September 28th, 2025]
- Machine learning and cell imaging combine to predict effectiveness of multiple sclerosis medication - Medical Xpress - September 25th, 2025 [September 25th, 2025]
- IC combines machine learning and analogue inferencing - Electronics Weekly - September 25th, 2025 [September 25th, 2025]
- ODU Awarded $2.3M NIH Grant to Improve Detection of Brain Tumor Recurrence with AI and Machine Learning - Old Dominion University - September 25th, 2025 [September 25th, 2025]
- Development of a machine learning-based depression risk identification tool for older adults with asthma - BMC Psychiatry - September 25th, 2025 [September 25th, 2025]
- AI and Machine Learning Uses in Neuroscience Drug Discovery, Upcoming Webinar Hosted by Xtalks - PR Newswire - September 25th, 2025 [September 25th, 2025]
- Error-controlled non-additive interaction discovery in machine learning models - Nature - September 23rd, 2025 [September 23rd, 2025]
- AI, Machine Learning Will Drive Market Data Consumption - Markets Media - September 23rd, 2025 [September 23rd, 2025]
- Machine Learning Model May Optimize Treatment Selection and Survival in HCC - Targeted Oncology - September 23rd, 2025 [September 23rd, 2025]
- From pixels to pumps: Machine learning and satellite imagery help map irrigation - Phys.org - September 23rd, 2025 [September 23rd, 2025]
- CMU physicist challenges what we know about particle physics with machine learning - The Tartan - September 23rd, 2025 [September 23rd, 2025]
- Hire Python Developers to Leverage the Power of Machine Learning & AI - WebWire - September 23rd, 2025 [September 23rd, 2025]
- AI-Powered Biology Careers in 2025: Opportunities with Machine Learning Skills - BioTecNika - September 23rd, 2025 [September 23rd, 2025]
- Machine learning and predictingstock price movements on NGX - Businessamlive - September 23rd, 2025 [September 23rd, 2025]
- Building a Hybrid Rule-Based and Machine Learning Framework to Detect and Defend Against Jailbreak Prompts in LLM Systems - MarkTechPost - September 21st, 2025 [September 21st, 2025]
- Development of a novel machine learning-based adaptive resampling algorithm for nuclear data processing - Nature - September 19th, 2025 [September 19th, 2025]
- Autobot platform uses machine learning to rapidly find best ways to make advanced materials - Tech Xplore - September 19th, 2025 [September 19th, 2025]
- 5 Key Takeaways | The Law of the Machine (Learning): Solving Complex AI Challenges - JD Supra - September 17th, 2025 [September 17th, 2025]
- Spectral and Machine Learning Approach Enhances Efficiency of Grape Embryo Rescue | Newswise - Newswise - September 17th, 2025 [September 17th, 2025]
- Helpful Reminders for Patent Eligibility of AI, Machine Learning, and Other Software-Related Inventions - JD Supra - September 17th, 2025 [September 17th, 2025]
- Opening the black box of machine learning-controlled plasma treatments - AIP.ORG - September 17th, 2025 [September 17th, 2025]
- Post-compilation Circuit Scaling for Quantum Machine Learning Models Reveals Resource Trends and Topology Impacts - Quantum Zeitgeist - September 17th, 2025 [September 17th, 2025]
- Machine-learning tool gives doctors a more detailed 3D picture of fetal health - Medical Xpress - September 17th, 2025 [September 17th, 2025]
- Portable Electronic Nose with Machine Learning Enhances VOC Detection in Forensic Science - Chromatography Online - September 15th, 2025 [September 15th, 2025]
- Developing a predictive model for breast cancer detection using radiomics-based mammography and machine learning - SpringerOpen - September 13th, 2025 [September 13th, 2025]
- and correlation of drug solubility via hybrid machine learning and gradient based optimization - Nature - September 11th, 2025 [September 11th, 2025]
- Rice-Houston Methodist partnership uses machine learning to reveal hidden patient groups in common heart valve disease - Rice University - September 11th, 2025 [September 11th, 2025]
- Amazon Uses Machine Learning to Tell Sellers if FBA Is a Good Fit - EcommerceBytes - September 11th, 2025 [September 11th, 2025]
- Eli Lilly Launches AI, Machine Learning Platform Called TuneLab For Biotech Companies - Stocktwits - September 11th, 2025 [September 11th, 2025]
- How AI and Machine Learning are Shaping the Future of Mobile Apps - indiatechnologynews.in - September 11th, 2025 [September 11th, 2025]
- Hybrid AI and semiconductor approaches for power quality improvement - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- The Predictive Turn | Preparing to Outthink Adversaries Through Predictive Analytics - Machine Learning Week 2025 - September 9th, 2025 [September 9th, 2025]
- NFL player props, odds and bets: Week 1, 2025 NFL picks, SportsLine Machine Learning Model AI predictions, SGP - CBS Sports - September 9th, 2025 [September 9th, 2025]
- Can machine learning forecast Lobo EV Technologies Ltd. recovery - Bear Alert & Daily Price Action Insights - Newser - September 6th, 2025 [September 6th, 2025]
- Generalised Machine Learning Models Outperform Personalised Models For Cognitive Load Classification In Real-Life Settings - Frontiers - September 6th, 2025 [September 6th, 2025]
- Machine learning for the prediction of blood transfusion risk during or after mitral valve surgery: a multicenter retrospective cohort study - Nature - September 6th, 2025 [September 6th, 2025]
- Machine Learning-Driven Exploration of Composition- and Temperature-Dependent Transport and Thermodynamic Properties in LiF-NaF-KF Molten Salts for... - September 6th, 2025 [September 6th, 2025]