Podcast: Machine Learning and Education The Badger Herald – The Badger Herald
Jeff Deiss 0:00Greetings, this is Jeff, director of the Badger Herald podcast. And today we have a very exciting episode were talking with Professor Kangwook Lee, part of the Electrical and Computer Engineering Department at the University of Wisconsin Madison. And were going to talk about his research on deep learning and recent developments in machine learning. And also a little bit about his influence on a popular test prep service called Riiid.
So, I originally saw your name in a New York Times article, about Riiid, which is a test prep service started by YJ Jang that uses deep learning to essentially better guide students towards more accurate test prep and just overall academic success. But we can get into that a little bit later. So first, if you want to introduce yourself, and just give a little background on your life.
Lee 1:18Alright, hi, Im Kangwook Lee. Again, Im assistant professor in the ECE department here. Came here in 2019, fall. So its been about three and a half years since I joined here. Ive been enjoying a lot, except the COVID. But everything is great. I mostly work on information theory, machine learning and deep learning in terms of research area. Before that, I did my PhD in Berkeley Masters and PhD in Berkeley. Before that, I was doing my undergrad studies in Korea, I grew up in Korea. So yeah, its been its been a while since I came to the United States. I did went back to Korea for three years for my military service, after my Ph.D., but yeah. So yeah, happy to meet you guys and talk about my research.
Deiss 2:09Of course, and thats the first question I have. So with any topic related to machine learning or information theory, even as someone who studied this at a pretty low level in school, it can be hard to wrap your head around some of these concepts, but maybe just in laymans terms, can you describe some of your recent research to give our listeners a better sense of what you do here at UW-Madison?
Lee 2:32Since I joined Madison, I worked on three different research topics. The first one was, how much data do we need to rely on machine learning? That one, I particularly studied the problem of recommendation where we have data from clients or customers, they provide their ratings on the different types of items. And from that kind of partially observed data. If you want to make recommendations for their future service, we should figure out how much data we need. So that kind of recommendation systems and algorithms was number one topic I worked on. The second topic I worked on was called trustworthy machine learning. So by trustworthy machine learning, I mean, machine learning algorithms are, in most cases, they are not fair. So they are not robust. And others are private, they used to leak private data that was used for training data. So there are many issues like this. And people started looking at how to solve this issue and make more robust, more fair, more or less more private algorithms. So those are the research topics I really liked working on in the last few years. I still work on them. Recently, I have started working on another research topic called large models. So large models are I guess you must have heard about like GPT, diffusion, models lips, those are the models that are becoming more and more popular, but we are lacking in theory in terms of how they work. So thats what I am surprised to see in this case.
Deiss 4:18Yeah, so I just wanted to ask you I often hear not necessarily in true academic papers, but just in the media, I hear about how some of these large models, especially if theyre convoluted, complicated neural networks or deep learning algorithms. Ive heard them described as a black box, where the actual mechanics of whats going on inside what what the algorithm is doing with the data is a little unclear from the outside, or as you have like a simple regression model. Its actually pretty easy to work out the math of what the algorithm is doing with the data but with a large model, is that the case and can describe a little bit about that black box problem that researchers have to deal with
Lee 4:57The black box aspect actually was for more general classes, lets say entire deep learning, you can say they are kind of blackbox. I, I think thats half correct, half incorrect, half incorrect in a sense that when we design those models, we have a particular goal that this, we want this to behave like this. So for instance, even if we call GPT, mostly are largely blackbox-ish, we still design the systems and algorithms such that it is good at predicting the next word. Thats, thats not something just came out out of box we designed such that it predicts the next word well, so. And thats what we are seeing in ChatGPT and OD GPT. So the, in terms of the operation or the final objective, they are doing what they people who designed wanted to do. So its less blackbox in that sense, however, how it actually works that well, I think thats the mysterious part, we couldnt expect how well it will work. But somehow it worked much better than what people expected. So explaining why thats the case. Thats an interesting research question. But thats what makes it a little black box-ish. Whats also very interesting to me is when it comes to GPT, and really large language models, while there is there are more mysterious things happening, going back to the first aspect. In fact, there are some interesting behaviors that people didnt intend to design. So things like incontext learning or future learning. Thats basically like, when you use GPT, you provide a few examples to the to the model, and the model is trying to learn some parents from the examples that are provided, which is a little bit beyond that what people used to expect from the model. So the model has some new properties or behaviors that we didnt design.
Deiss 7:00Yes, and I want to get back to ChatGPT for another perspective and a little bit, but one thing I saw that you were recently researching, I saw come up in interviews is about the straggler problem in machine learning. As far as I know, its where a certain I dont know if node is the correct term or just some part of the machine learning algorithm is so deficient that it brings down the performance of the whole algorithm as a whole. Can you describe a little bit about what the straggler problem is and the research youre doing on it?
Lee 7:29Yeah. So the straggler problem is, is a term that describes where you have a large cluster and your entire cluster is working on a particular task jointly. And if one of the nodes or machine within the cluster starts performing bad or starts producing wrong output or start behaving slower than the other, that the entire system is either getting wrong answers, or either they are becoming entirely very slow. So straggler problem basically means that you have a bigger system consisting of large workers, one of the few workers become very slow, or erroneous, the entire system becomes bad. Thats the phenomenon or the problem. This problem has been first observed in large data centers like Google or Facebook, about a decade ago, they were reporting that there are a few stragglers that make their entire data center really slow, and really bad in terms of the performances. So we started working on how to fix these problems using more principled approaches like information and coding theory, that are very related to large scale machine learning systems. Because large scale machine learning systems require cluster training, distributed training, that kind of stuff. So thats how its connected to distribute machine.
Deiss 8:57Very interesting stuff. I want to pivot away from your research for a little bit and just talk about how I originally heard about your name, like I said, In the beginning, I saw a New York Times article was about a test prep service. And why YJ Jang who started Riiid this test prep service, you said he was inspired by you to kind of use deep learning in his startup, whatever software he was originally creating, what is your relationship with him? And how did you influence them to utilize deep learning?
Lee 9:25Sure. Heres a friend of mine. He texted me with the link to the article is I was really interested to see that link to see the article. I met him about 10 years ago, when I was a student at Berkeley. He was also a student at Berkeley, but we didnt know each other. But we both participated in some some startup competetion over the weekend. So we had when we drove down to San Jose, where the startup competition was happening, and I didnt know him so I was on Find finding some other folks there. And we created a some demo and we gave a pitch. We won the second place, he won the first place.
Deiss 10:09Wow.
Lee 10:10So, and I was talking to him, Hey, where are you from? And he said he was from Berkeley. So Im from Berkeley. So I got to know him from there. I knew he was a really good businessman back then. But, but then we came back to Berkeley, we started talking more and more. And we had some idea of having a startup. So we had some ideas, we spent about six months developing business ideas, and also building some demos. It was also related to education. So its slightly different from what they are working on now. But eventually, we found that the business is really difficult to run. So we gave up. But after that, he started his own business. And he started asking me, Hey, I have this interesting problem. But I think machine learning could play a big role here. So he started sharing his business idea. And then that was the time when I was working on machine learning. In particular, I was working on recommendation system. And I was able to find the connection between the recommendation system, and what the problem they are working with the problem they are working on is students are working and spending so much time on prepping test. And they waste so much time on working on something they already know, efficient test prep is no different from not wasting time on watching some, something thats not yours on Netflix. So yeah, so thats the point where I started this kind of idea, sharing the sharing this idea with him. And in fact, deep learning was necessarily being used for recommendation system. So all these ideas I shared with him, and he made a great business out of it.
Deiss 11:54Yes, definitely. Obviously, test prep services like this are some ways in which machine learning and deep learning models could actually help educators. But in the media, and I see all the time, its all about ChatGPT all that I hear like every day, theres some new news about ChatGPT. And I think that actually the panel here at UW-Madison recently about students using this potentially to cheat on things that they didnt think you could cheat on before like having it write your essay for you and stuff. As an educator or someone connected to the education system here. Do you think that these chat bots pose a threat to traditional methods of teaching?
Lee 12:32My opinion, I would say no, I dont see much difference between the moment where we started having access to say calculators, or MATLAB, or Python, those are some things that we still exercise when we are in elementary school. In elementary schools we are supposed to do 12 plus 13 or 10 minus 5, youre still doing it. And of course, I mean, they can go home and to use calculator, and cheat. But we dont care. Because at some point, unless youre going to rely all those machines and devices to do entire your work, you have to do it on your own sometimes. And also you have to understand the principles behind those tasks. So for instance, essay writing is the biggest issues right now with ChatGPT. While I mean, you can always use ChatGPT without knowing anything about essay writing, and I think thats coming is going to be better and better way better this year. However, if you dont decide to not learn how to write essays, then you didnt you end up not knowing something thats really important in your life. So eventually people will choose to learn it anyway. And not cheat. In terms of how to fairly great them. Thats the problem. Yeah, I think grading is the issue. Entire education on breakout.
Deiss 14:01Yes, thats thats kind of the thing. In my opinion, I thought a similar thing where if a student is really good, and they want to improve, and they want to have that good grade on the final exam, whats whatever it is, theyre going to learn what they need to learn. But when it comes to grading individual assignments, I feel if something were it can write your essay for you, it throws the whole, the whole book out the window, where its like, how do I know how to grade things if I cant tell if someone wrote this by themselves for three days, or they put it into a chatbot essentially, regardless of ChatGPT kind of taking over the media and public discourse around machine learning. I often joke with my friends I say, if we think ChatGPT is cool, I dont know what like Google is cooking up in the back for 10 years. Who knows whats going to be here over the next decade? So in your opinion, are there more interesting developments in machine learning right now? People can expect to see and if so, what do you think they are?
Lee 14:56Yeah, but before we move on, I think Google also has a lot of interesting techniques and models, but they are just slower in terms of releasing them and adapting them. So well see, I think the recent announcement on part is super interesting. So well get to see more and more coming like that. So anyway, so talking about other interesting matters. Other than larger models, what also interests me, theres these are diffusion models, I guess, perhaps most have heard about, like data lead to where the model is where you provide text prompt and throw something for you. That was more or less fun, activities, because you couldnt do much with that, like textured image model. But I think the fundamental technique has been applied to many different domains. And now its being used for not just for images, but for audio music, something else like 3D assets, and things are going wider and wider. And we will probably see a moment where these things become really powerful and being used everywhere, basically. So I dont think we need to draw any diagrams by hands. When you create a PowerPoint, you just need to type, whatever you think, how it should look like. It should be able to draw everything for you. And any design problems any Ill say, think about web design, product design, things are going to be very different. Yeah.
Deiss 16:35Yes. I guess just to wrap it up, do people like to kind of fear monger about a lot of this stuff like this is going to destroy the job market, everyones going to be automated away? Thats just one thing I hear. But people people do have concerns about just the prevalence of machine learning thats kind of emerging in our lives. Do you have any concerns about whats going on right now, in the world of machine learning? Or do you think people might be a little too pessimistic?
Lee 17:03There are certainly I will say there are some certain jobs that are going to be less useful than now. Thats clearly a concern. However, for most jobs out there, I think, either they can be benefited from these models and tools, their productivity will become better. And they probably can make more money if they know how to use these tools better. However, for instance, lets say concept artist, or designers, for instance, talking about this diffusion models. At some point, these kind of automated models could become really good at doing almost a job almost as good as what theyre doing right now. And thats the point where its really tricky because either we were gonna see some two different markets, right now, if you go to pottery market, then there are handmade potteries. And factory made pottery is no one can distinguish, to be honest. Yeah, handmade pottery is even more unique. They have some slightly different ways of coloring, and it actually has a little bit of defects that made this handmade pottery is look even more unique and beautiful than the factory made ones. But back in the days, we used to appreciate factory made like pottery, no defect, completely symmetric. Thats what human couldnt make. But I think we are going that way. Because now models are going to be better at making perfect flawless architectures and designs. And probably what we will do as a human designers and artists have a little bit of I wouldnt call it flaws or defects, but well turn look like what machines can make. So maybe those two markets will emerge. And maybe those two markets will survive forever, like pottery market. So I dont know, I cannot expect what will happen, but Im still optimistic.
Deiss 19:05Awesome. I think thats a good end it off on a high note there. And thank you for coming to talk to me today on the Badger Herald podcast, and Im excited to see what you do next in your research.
Lee 19:14All right. Thank you. It was great talking to you.
Deiss 19:15Thank you so much.
Follow this link:
Podcast: Machine Learning and Education The Badger Herald - The Badger Herald
- Google is experimenting with machine learning-powered age-estimation tech in the US - TechCrunch - August 1st, 2025 [August 1st, 2025]
- Google Will Use Machine Learning to Estimate Users Age and Block Them From Restricted Content and Ads - Adweek - August 1st, 2025 [August 1st, 2025]
- A thermodynamic approach to machine learning: How optimal transport theory can improve generative models - Tech Xplore - August 1st, 2025 [August 1st, 2025]
- Machine Learning Transforms Immunotherapy in Metastatic NSCLC - BIOENGINEER.ORG - August 1st, 2025 [August 1st, 2025]
- Clinical decision support for vestibular diagnosis: large-scale machine learning with lived experience coaching - Nature - August 1st, 2025 [August 1st, 2025]
- Graph theoretic and machine learning approaches in molecular property prediction of bladder cancer therapeutics - Nature - August 1st, 2025 [August 1st, 2025]
- Automotive Battery Management System Market Outlook Report 2025-2034 | AI and Machine Learning Transforming the BMS Technology Landscape - Yahoo.co - August 1st, 2025 [August 1st, 2025]
- Machine learning model predicts radiotherapy response in patients with nasopharyngeal carcinoma - News-Medical - August 1st, 2025 [August 1st, 2025]
- Google is experimenting with machine learning-powered age-estimation tech in the US - Yahoo Finance - August 1st, 2025 [August 1st, 2025]
- Identification and validation of an explainable machine learning model for vascular depression diagnosis in the older adults: a multicenter cohort... - August 1st, 2025 [August 1st, 2025]
- Machine learning-based high-benefit approach versus traditional high-risk approach in statin therapy: the Shizuoka Kokuho database study - Nature - August 1st, 2025 [August 1st, 2025]
- Investigating the Impact of the Stationarity Hypothesis on Heart Failure Detection using Deep Convolutional Scattering Networks and Machine Learning -... - August 1st, 2025 [August 1st, 2025]
- Predicting Sepsis with Machine Learning and Lab-on-a-Chip - Electropages - August 1st, 2025 [August 1st, 2025]
- Classification accuracy of pain intensity induced by leg blood flow restriction during walking using machine learning based on electroencephalography... - August 1st, 2025 [August 1st, 2025]
- Machine learning-based drug-drug interaction prediction: a critical review of models, limitations, and data challenges - Frontiers - August 1st, 2025 [August 1st, 2025]
- AI and Machine Learning - AI and geospatial companies join forces to map Africa - Smart Cities World - July 30th, 2025 [July 30th, 2025]
- Summer research project explores alternative machine learning framework - Mercer University - July 30th, 2025 [July 30th, 2025]
- Unveiling multiscale drivers of wind speed in Michigan using machine learning - Nature - July 30th, 2025 [July 30th, 2025]
- New machine learning tool reveals atomic structure of ultra-thin film materials - Phys.org - July 28th, 2025 [July 28th, 2025]
- Optimizing base fluid composition for PEMFC cooling: A machine learning approach to balance thermal and rheological performance - Nature - July 28th, 2025 [July 28th, 2025]
- Overview: Machine learning in the medical space - Scientist Live - July 28th, 2025 [July 28th, 2025]
- IMD develops a novel machine-learning-based tool to predict urban rainfall trends in India - Research Matters - July 28th, 2025 [July 28th, 2025]
- Unsupervised System 2 Thinking: The Next Leap in Machine Learning with Energy-Based Transformers - MarkTechPost - July 27th, 2025 [July 27th, 2025]
- A machine learning-based approach to predict depression in Chinese older adults with subjective cognitive decline: a longitudinal study - Nature - July 27th, 2025 [July 27th, 2025]
- Machine Learning Identifies Role of Impaired Purine Metabolism in Gout Pathogenesis - HCPLive - July 27th, 2025 [July 27th, 2025]
- Detection of breast cancer using machine learning and explainable artificial intelligence - Nature - July 27th, 2025 [July 27th, 2025]
- Investigation of key ferroptosis-associated genes and potential therapeutic drugs for asthma based on machine learning and regression models - Nature - July 27th, 2025 [July 27th, 2025]
- Predicting postoperative trauma-induced coagulopathy in patients with severe injuries by machine learning - Nature - July 27th, 2025 [July 27th, 2025]
- Machine learning based multi-stage intrusion detection system and feature selection ensemble security in cloud assisted vehicular ad hoc networks -... - July 27th, 2025 [July 27th, 2025]
- Comparative analysis of machine learning models for malaria detection using validated synthetic data: a cost-sensitive approach with clinical domain... - July 27th, 2025 [July 27th, 2025]
- Statistical modelling and forecasting of HIV and anti-retroviral therapy cases by time-series and machine learning models - Nature - July 27th, 2025 [July 27th, 2025]
- Seeing Through the Rust: How Machine Learning is Improving Corrosion Detection - Research Matters - July 27th, 2025 [July 27th, 2025]
- Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S - ACS Publications - July 24th, 2025 [July 24th, 2025]
- Machine learning-based academic performance prediction with explainability for enhanced decision-making in educational institutions - Nature - July 24th, 2025 [July 24th, 2025]
- Can External Validation Tools Can Improve Annotation Quality for LLM-as-a-Judge - Apple Machine Learning Research - July 24th, 2025 [July 24th, 2025]
- How to use learning curves to evaluate the sample size for malaria prediction models developed using machine learning algorithms - Malaria Journal - July 24th, 2025 [July 24th, 2025]
- Development and validation of a dynamic early warning system with time-varying machine learning models for predicting hemodynamic instability in... - July 24th, 2025 [July 24th, 2025]
- Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning -... - July 24th, 2025 [July 24th, 2025]
- Algorithmica Reports 35% Return in First Fiscal Year, Driven by Machine Learning Trading Technology - PR Newswire - July 24th, 2025 [July 24th, 2025]
- New research using machine learning further links increase in earthquakes, quake intensity, in Raton Basin to wastewater injections - The... - July 24th, 2025 [July 24th, 2025]
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]