PND-Net: plant nutrition deficiency and disease classification using graph convolutional network | Scientific Reports – Nature.com
Jung, M. et al. Construction of deep learning-based disease detection model in plants. Sci. Rep. 13, 7331 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Aiswarya, J., Mariammal, K. & Veerappan, K. Plant nutrient deficiency detection and classification-a review. In 2023 5th International Conference Inventive Research in Computing Applications (ICIRCA). 796802 (IEEE, 2023).
Yan, Q., Lin, X., Gong, W., Wu, C. & Chen, Y. Nutrient deficiency diagnosis of plants based on transfer learning and lightweight convolutional neural networks Mobilenetv3-large. In Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition. 2633 (2022).
Sudhakar, M. & Priya, R. Computer vision based machine learning and deep learning approaches for identification of nutrient deficiency in crops: A survey. Nat. Environ. Pollut. Technol. 22 (2023).
Noon, S. K., Amjad, M., Qureshi, M. A. & Mannan, A. Use of deep learning techniques for identification of plant leaf stresses: A review. Sustain. Comput. Inform. Syst. 28, 100443 (2020).
Google Scholar
Waheed, H. et al. Deep learning based disease, pest pattern and nutritional deficiency detection system for Zingiberaceae crop. Agriculture 12, 742 (2022).
Article Google Scholar
Barbedo, J. G. A. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agric. 162, 482492 (2019).
Article Google Scholar
Shadrach, F. D., Kandasamy, G., Neelakandan, S. & Lingaiah, T. B. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula). Sci. Rep. 13, 14108 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Sathyavani, R., JaganMohan, K. & Kalaavathi, B. Classification of nutrient deficiencies in rice crop using DenseNet-BC. Mater. Today Proc. 56, 17831789 (2022).
Article CAS Google Scholar
Haris, S., Sai, K.S., Rani, N.S. etal. Nutrient deficiency detection in mobile captured guava plants using light weight deep convolutional neural networks. In 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). 11901193 (IEEE, 2023).
Munir, S., Seminar, K.B., Sukoco, H. etal. The application of smart and precision agriculture (SPA) for measuring leaf nitrogen content of oil palm in peat soil areas. In 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). 650655 (IEEE, 2023).
Lu, J., Peng, K., Wang, Q. & Sun, C. Lettuce plant trace-element-deficiency symptom identification via machine vision methods. Agriculture 13, 1614 (2023).
Article CAS Google Scholar
Omer, S.M., Ghafoor, K.Z. & Askar, S.K. Lightweight improved YOLOv5 model for cucumber leaf disease and pest detection based on deep learning. In Signal, Image and Video Processing. 114 (2023).
Kumar, A. & Bhowmik, B. Automated rice leaf disease diagnosis using CNNs. In 2023 IEEE Region 10 Symposium (TENSYMP). 16 (IEEE, 2023).
Senjaliya, H. etal. A comparative study on the modern deep learning architectures for predicting nutritional deficiency in rice plants. In 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET). 16 (IEEE, 2023).
Ennaji, O., Vergutz, L. & ElAllali, A. Machine learning in nutrient management: A review. Artif. Intell. Agric. (2023).
Rathnayake, D., Kumarasinghe, K., Rajapaksha, R. & Katuwawala, N. Green insight: A novel approach to detecting and classifying macro nutrient deficiencies in paddy leaves. In 2023 8th International Conference Information Technology Research (ICITR). 16 (IEEE, 2023).
Asaari, M. S.M., Shamsudin, S. & Wen, L.J. Detection of plant stress condition with deep learning based detection models. In 2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC). 15 (IEEE, 2023).
Tavanapong, W. et al. Artificial intelligence for colonoscopy: Past, present, and future. IEEE J. Biomed. Health Inform. 26, 39503965 (2022).
Article PubMed PubMed Central Google Scholar
Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (2017).
Zhang, S., Tong, H., Xu, J. & Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 6, 123 (2019).
Article Google Scholar
Bera, A., Wharton, Z., Liu, Y., Bessis, N. & Behera, A. SR-GNN: Spatial relation-aware graph neural network for fine-grained image categorization. IEEE Trans. Image Process. 31, 60176031 (2022).
Article ADS Google Scholar
Qu, Z., Yao, T., Liu, X. & Wang, G. A graph convolutional network based on univariate neurodegeneration biomarker for Alzheimers disease diagnosis. IEEE J. Transl. Eng. Health Med. (2023).
Khlifi, M. K., Boulila, W. & Farah, I. R. Graph-based deep learning techniques for remote sensing applications: Techniques, taxonomy, and applicationsA comprehensive review. Comput. Sci. Rev. 50, 100596 (2023).
Article MathSciNet Google Scholar
Sunitha, P., Uma, B., Channakeshava, S. & Babu, S. A fully labelled image dataset of banana leaves deficient in nutrients. Data Brief 48, 109155 (2023).
Article Google Scholar
Tuesta-Monteza, V. A., Mejia-Cabrera, H. I. & Arcila-Diaz, J. CoLeaf-DB: Peruvian coffee leaf images dataset for coffee leaf nutritional deficiencies detection and classification. Data Brief 48, 109226 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chungcharoen, T. et al. Machine learning-based prediction of nutritional status in oil palm leaves using proximal multispectral images. Comput. Electron. Agric. 198, 107019 (2022).
Article Google Scholar
Bhavya, T., Seggam, R. & Jatoth, R.K. Fertilizer recommendation for rice crop based on NPK nutrient deficiency using deep neural networks and random forest algorithm. In 2023 3rd International Conference on Artificial Intelligence and Signal Processing (AISP). 15 (IEEE, 2023).
Dey, B., Haque, M. M. U., Khatun, R. & Ahmed, R. Comparative performance of four CNN-based deep learning variants in detecting Hispa pest, two fungal diseases, and npk deficiency symptoms of rice (Oryza sativa). Comput. Electron. Agric. 202, 107340 (2022).
Article Google Scholar
Cevallos, C., Ponce, H., Moya-Albor, E. & Brieva, J. Vision-based analysis on leaves of tomato crops for classifying nutrient deficiency using convolutional neural networks. In 2020 International Joint Conference on Neural Networks (IJCNN). 17 (IEEE, 2020).
Espejo-Garcia, B., Malounas, I., Mylonas, N., Kasimati, A. & Fountas, S. Using Efficientnet and transfer learning for image-based diagnosis of nutrient deficiencies. Comput. Electron. Agric. 196, 106868 (2022).
Article Google Scholar
Wang, C., Ye, Y., Tian, Y. & Yu, Z. Classification of nutrient deficiency in rice based on cnn model with reinforcement learning augmentation. In 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM). 107111 (IEEE, 2021).
Bahtiar, A.R., Santoso, A.J., Juhariah, J. etal. Deep learning detected nutrient deficiency in chili plant. In 2020 8th International Conference on Information and Communication Technology (ICoICT). 14 (IEEE, 2020).
Rahadiyan, D., Hartati, S., Nugroho, A.P. etal. Feature aggregation for nutrient deficiency identification in chili based on machine learning. Artif. Intell. Agric. (2023).
Aishwarya, M. & Reddy, P. Ensemble of CNN models for classification of groundnut plant leaf disease detection. Smart Agric. Technol. 100362 (2023).
Nadafzadeh, M. et al. Design, fabrication and evaluation of a robot for plant nutrient monitoring in greenhouse (case study: iron nutrient in spinach). Comput. Electron. Agric. 217, 108579 (2024).
Article Google Scholar
Desiderio, J. M.H., Tenorio, A. J.F. & Manlises, C.O. Health classification system of romaine lettuce plants in hydroponic setup using convolutional neural networks (CNN). In 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). 16 (IEEE, 2022).
Costa, L., Kunwar, S., Ampatzidis, Y. & Albrecht, U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis. Agric. 122 (2022).
Lanjewar, M.G. & Parab, J.S. CNN and transfer learning methods with augmentation for citrus leaf diseases detection using PaaS cloud on mobile. Multimed. Tools Appl. 126 (2023).
Lanjewar, M.G., Morajkar, P. P. Modified transfer learning frameworks to identify potato leaf diseases. Multimed. Tools Appl. 123 (2023).
Dissanayake, A. etal. Detection of diseases and nutrition in bell pepper. In 2023 5th International Conference on Advancements in Computing (ICAC). 286291 (IEEE, 2023).
Wu, Z., Jiang, F. & Cao, R. Research on recognition method of leaf diseases of woody fruit plants based on transfer learning. Sci. Rep. 12, 15385 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Liu, H., Lv, H., Li, J., Liu, Y. & Deng, L. Research on maize disease identification methods in complex environments based on cascade networks and two-stage transfer learning. Sci. Rep. 12, 18914 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Kukreja, V., Sharma, R., Vats, S. & Manwal, M. DeepLeaf: Revolutionizing rice disease detection and classification using convolutional neural networks and random forest hybrid model. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). 16 (IEEE, 2023).
Bezabih, Y. A., Salau, A. O., Abuhayi, B. M., Mussa, A. A. & Ayalew, A. M. CPD-CCNN: Classification of pepper disease using a concatenation of convolutional neural network models. Sci. Rep. 13, 15581 (2023).
Article ADS CAS Google Scholar
Kini, A. S., Prema, K. & Pai, S. N. Early stage black pepper leaf disease prediction based on transfer learning using convnets. Sci. Rep. 14, 1404 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Wu, Q. et al. A classification method for soybean leaf diseases based on an improved convnext model. Sci. Rep. 13, 19141 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Ma, X., Chen, W. & Xu, Y. ERCP-Net: A channel extension residual structure and adaptive channel attention mechanism for plant leaf disease classification network. Sci. Rep. 14, 4221 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Babatunde, R. S. et al. A novel smartphone application for early detection of habanero disease. Sci. Rep. 14, 1423 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Nagasubramanian, G. et al. Ensemble classification and IoT-based pattern recognition for crop disease monitoring system. IEEE Internet Things J. 8, 1284712854 (2021).
Article Google Scholar
Nachtigall, L.G., Araujo, R.M. & Nachtigall, G.R. Classification of apple tree disorders using convolutional neural networks. In 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI). 472476 (IEEE, 2016).
Borhani, Y., Khoramdel, J. & Najafi, E. A deep learning based approach for automated plant disease classification using vision transformer. Sci. Rep. 12, 11554 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Aishwarya, M. & Reddy, A. P. Dataset of groundnut plant leaf images for classification and detection. Data Brief 48, 109185 (2023).
Article Google Scholar
Shi, J. et al. Cervical cell classification with graph convolutional network. Comput. Methods Prog. Biomed. 198, 105807 (2021).
Article Google Scholar
Fahad, N.M., Azam, S., Montaha, S. & Mukta, M. S.H. Enhancing cervical cancer diagnosis with graph convolution network: AI-powered segmentation, feature analysis, and classification for early detection. Multimed. Tools Appl. 125 (2024).
Lanjewar, M. G., Panchbhai, K. G. & Patle, L. B. Fusion of transfer learning models with LSTM for detection of breast cancer using ultrasound images. Comput. Biol. Med. 169, 107914 (2024).
Article CAS PubMed Google Scholar
He, K., Zhang, X., Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 19041916 (2015).
Article PubMed Google Scholar
Szegedy, C. etal. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 19 (2015).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 28182826 (2016).
Chollet, F. Xception: Deep learning with depthwise separable convolutions. In IEEE Conference on Computer Vision Pattern Recognition. 12511258 (2017).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 770778 (2016).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. MobileNetv2: Inverted residuals and linear bottlenecks. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 45104520 (2018).
Bera, A., Nasipuri, M., Krejcar, O. & Bhattacharjee, D. Fine-grained sports, yoga, and dance postures recognition: A benchmark analysis. IEEE Trans. Instrum. Meas. 72, 113 (2023).
Article Google Scholar
Bera, A., Wharton, Z., Liu, Y., Bessis, N. & Behera, A. Attend and guide (AG-Net): A keypoints-driven attention-based deep network for image recognition. IEEE Trans. Image Process. 30, 36913704 (2021).
Article ADS PubMed Google Scholar
Singh, D. etal. PlantDoc: A dataset for visual plant disease detection. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 249253 (ACM, 2020).
Hameed, Z., Garcia-Zapirain, B., Aguirre, J. J. & Isaza-Ruget, M. A. Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network. Sci. Rep. 12, 15600 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Shabrina, N. H. et al. A novel dataset of potato leaf disease in uncontrolled environment. Data Brief 52, 109955 (2024).
See more here:
PND-Net: plant nutrition deficiency and disease classification using graph convolutional network | Scientific Reports - Nature.com
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]
- Ensemble Machine Learning for Digital Mapping of Soil pH and Electrical Conductivity in the Andean Agroecosystem of Peru - Frontiers - October 21st, 2025 [October 21st, 2025]
- New UA research develops machine learning to address needs of children with autism - AZPM News - October 21st, 2025 [October 21st, 2025]
- NMDSI Speaker Series on Weather Forecasting: What Machine Learning Can and Can't Do, Oct. 23 - Marquette Today - October 21st, 2025 [October 21st, 2025]
- Polyskill Achieves 1.7x Improved Skill Reuse and 9.4% Higher Success Rates through Polymorphic Abstraction in Machine Learning - Quantum Zeitgeist - October 21st, 2025 [October 21st, 2025]
- University of Strathclyde opens admission for MSc in Machine & Deep Learning for Jan 2026 intake - The Indian Express - October 21st, 2025 [October 21st, 2025]
- Reducing Model Biases with Machine Learning Corrections Derived from Ocean Data Assimilation Increments - ESS Open Archive - October 19th, 2025 [October 19th, 2025]
- Unlocking Obesity: Multi-Omics and Machine Learning Insights - Bioengineer.org - October 19th, 2025 [October 19th, 2025]
- Lockheed Martin advances PAC-3 MSE interceptor using artificial intelligence and machine learning - Defence Industry Europe - October 19th, 2025 [October 19th, 2025]
- Semi-automated surveillance of surgical site infections using machine learning and rule-based classification models - Nature - October 19th, 2025 [October 19th, 2025]
- AI and Machine Learning - City of San Jos to release RFP for generative AI platform - Smart Cities World - October 19th, 2025 [October 19th, 2025]
- Machine learning helps identify 'thermal switch' for next-generation nanomaterials - Phys.org - October 17th, 2025 [October 17th, 2025]
- Machine Learning Makes Wildlife Data Analysis Less of a Trek - Maryland.gov - October 17th, 2025 [October 17th, 2025]
- An interpretable multimodal machine learning model for predicting malignancy of thyroid nodules in low-resource scenarios - BMC Endocrine Disorders - October 17th, 2025 [October 17th, 2025]
- In First-Episode Psychosis Patients, Machine Learning Predicted Illness Trajectories to Potentially Improve Outcomes - Brain and Behavior Research - October 17th, 2025 [October 17th, 2025]
- Novel Machine Learning Model Improves MASLD Detection in Type 2 Diabetes - The American Journal of Managed Care (AJMC) - October 17th, 2025 [October 17th, 2025]
- Hybrid machine learning models for predicting the tensile strength of reinforced concrete incorporating nano-engineered and sustainable supplementary... - October 17th, 2025 [October 17th, 2025]
- Modelling of immune infiltration in prostate cancer treated with HDR-brachytherapy using Raman spectroscopy and machine learning - Nature - October 17th, 2025 [October 17th, 2025]
- Association between atherogenic index of plasma and sepsis in critically ill patients with ischemic stroke: a retrospective cohort study using... - October 17th, 2025 [October 17th, 2025]
- AI enters the nuclear age: Pentagon modernizes warheads with machine learning - Washington Times - October 17th, 2025 [October 17th, 2025]
- AI and Machine Learning - Bentley Systems shares its vision for trustworthy AI - Smart Cities World - October 17th, 2025 [October 17th, 2025]
- Looking back to move forward: can historical clinical trial data and machine learning drive change in participant recruitment in anticipation of... - October 15th, 2025 [October 15th, 2025]
- Physics-Based Machine Learning Paves the Way for Advanced 3D-Printed Materials - Bioengineer.org - October 15th, 2025 [October 15th, 2025]
- Predicting one-year overall survival in patients with AITL using machine learning algorithms: a multicenter study - Nature - October 15th, 2025 [October 15th, 2025]
- Explainable machine learning models for predicting of protein-energy wasting in patients on maintenance haemodialysis - BMC Nephrology - October 15th, 2025 [October 15th, 2025]
- Feasibility of machine learning analysis for the identification of patients with possible primary ciliary dyskinesia - Orphanet Journal of Rare... - October 15th, 2025 [October 15th, 2025]
- Machine learning-based prediction of preeclampsia using first-trimester inflammatory markers and red blood cell indices - BMC Pregnancy and Childbirth - October 15th, 2025 [October 15th, 2025]
- Utilizing AI and machine learning to improve railroad safety: Detecting trespasser hotspots - masstransitmag.com - October 15th, 2025 [October 15th, 2025]
- Precision medicine meets machine learning: AI and oncology biomarkers - pharmaphorum - October 15th, 2025 [October 15th, 2025]
- Aether Pro Exchange Transforms Execution Dynamics with Machine-Learning Optimization - GlobeNewswire - October 15th, 2025 [October 15th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of depression, anxiety, and stress among university students: a cross-sectional... - October 15th, 2025 [October 15th, 2025]
- Artificial Intelligence vs. Machine Learning: Which skills will open better career options in the global - Times of India - October 15th, 2025 [October 15th, 2025]
- Study Reveals Impact of Negative Class Definitions on Machine Learning Accuracy in Immunotherapy - geneonline.com - October 15th, 2025 [October 15th, 2025]
- Muna Al-Khaifi: Detection of Breast Cancer Using Machine Learning and Explainable AI - Oncodaily - October 13th, 2025 [October 13th, 2025]
- Expedia Group Unveils Innovative AI and Machine Learning Solutions to Transform Partner Travel Experiences - Travel And Tour World - October 13th, 2025 [October 13th, 2025]
- Machine Learning-Guided Prediction of Formulation Performance in Inhalable CiprofloxacinBile Acid Dispersions with Antimicrobial and Toxicity... - October 13th, 2025 [October 13th, 2025]
- Machine Learning and BIG DATA workshop planned Oct. 14-15 - West Virginia University - October 11th, 2025 [October 11th, 2025]
- How Google enables third-party circularity by increasing recycling rates with Machine Learning - The World Business Council for Sustainable... - October 11th, 2025 [October 11th, 2025]
- Integrating Artificial Intelligence and Machine Learning in Hydroclimatic Research - A Promising Step Forward - University of Northern British... - October 11th, 2025 [October 11th, 2025]
- Semi-automatic detection of anteriorly displaced temporomandibular joint discs in magnetic resonance images using machine learning - BMC Oral Health - October 11th, 2025 [October 11th, 2025]
- AI and Machine Learning - Partnership to bring infrastructure intelligence to US public sector - Smart Cities World - October 11th, 2025 [October 11th, 2025]
- Between rain and snow, machine learning finds nine precipitation types - Phys.org - October 9th, 2025 [October 9th, 2025]