PND-Net: plant nutrition deficiency and disease classification using graph convolutional network | Scientific Reports – Nature.com
Jung, M. et al. Construction of deep learning-based disease detection model in plants. Sci. Rep. 13, 7331 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Aiswarya, J., Mariammal, K. & Veerappan, K. Plant nutrient deficiency detection and classification-a review. In 2023 5th International Conference Inventive Research in Computing Applications (ICIRCA). 796802 (IEEE, 2023).
Yan, Q., Lin, X., Gong, W., Wu, C. & Chen, Y. Nutrient deficiency diagnosis of plants based on transfer learning and lightweight convolutional neural networks Mobilenetv3-large. In Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition. 2633 (2022).
Sudhakar, M. & Priya, R. Computer vision based machine learning and deep learning approaches for identification of nutrient deficiency in crops: A survey. Nat. Environ. Pollut. Technol. 22 (2023).
Noon, S. K., Amjad, M., Qureshi, M. A. & Mannan, A. Use of deep learning techniques for identification of plant leaf stresses: A review. Sustain. Comput. Inform. Syst. 28, 100443 (2020).
Google Scholar
Waheed, H. et al. Deep learning based disease, pest pattern and nutritional deficiency detection system for Zingiberaceae crop. Agriculture 12, 742 (2022).
Article Google Scholar
Barbedo, J. G. A. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agric. 162, 482492 (2019).
Article Google Scholar
Shadrach, F. D., Kandasamy, G., Neelakandan, S. & Lingaiah, T. B. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula). Sci. Rep. 13, 14108 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Sathyavani, R., JaganMohan, K. & Kalaavathi, B. Classification of nutrient deficiencies in rice crop using DenseNet-BC. Mater. Today Proc. 56, 17831789 (2022).
Article CAS Google Scholar
Haris, S., Sai, K.S., Rani, N.S. etal. Nutrient deficiency detection in mobile captured guava plants using light weight deep convolutional neural networks. In 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). 11901193 (IEEE, 2023).
Munir, S., Seminar, K.B., Sukoco, H. etal. The application of smart and precision agriculture (SPA) for measuring leaf nitrogen content of oil palm in peat soil areas. In 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). 650655 (IEEE, 2023).
Lu, J., Peng, K., Wang, Q. & Sun, C. Lettuce plant trace-element-deficiency symptom identification via machine vision methods. Agriculture 13, 1614 (2023).
Article CAS Google Scholar
Omer, S.M., Ghafoor, K.Z. & Askar, S.K. Lightweight improved YOLOv5 model for cucumber leaf disease and pest detection based on deep learning. In Signal, Image and Video Processing. 114 (2023).
Kumar, A. & Bhowmik, B. Automated rice leaf disease diagnosis using CNNs. In 2023 IEEE Region 10 Symposium (TENSYMP). 16 (IEEE, 2023).
Senjaliya, H. etal. A comparative study on the modern deep learning architectures for predicting nutritional deficiency in rice plants. In 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET). 16 (IEEE, 2023).
Ennaji, O., Vergutz, L. & ElAllali, A. Machine learning in nutrient management: A review. Artif. Intell. Agric. (2023).
Rathnayake, D., Kumarasinghe, K., Rajapaksha, R. & Katuwawala, N. Green insight: A novel approach to detecting and classifying macro nutrient deficiencies in paddy leaves. In 2023 8th International Conference Information Technology Research (ICITR). 16 (IEEE, 2023).
Asaari, M. S.M., Shamsudin, S. & Wen, L.J. Detection of plant stress condition with deep learning based detection models. In 2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC). 15 (IEEE, 2023).
Tavanapong, W. et al. Artificial intelligence for colonoscopy: Past, present, and future. IEEE J. Biomed. Health Inform. 26, 39503965 (2022).
Article PubMed PubMed Central Google Scholar
Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (2017).
Zhang, S., Tong, H., Xu, J. & Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 6, 123 (2019).
Article Google Scholar
Bera, A., Wharton, Z., Liu, Y., Bessis, N. & Behera, A. SR-GNN: Spatial relation-aware graph neural network for fine-grained image categorization. IEEE Trans. Image Process. 31, 60176031 (2022).
Article ADS Google Scholar
Qu, Z., Yao, T., Liu, X. & Wang, G. A graph convolutional network based on univariate neurodegeneration biomarker for Alzheimers disease diagnosis. IEEE J. Transl. Eng. Health Med. (2023).
Khlifi, M. K., Boulila, W. & Farah, I. R. Graph-based deep learning techniques for remote sensing applications: Techniques, taxonomy, and applicationsA comprehensive review. Comput. Sci. Rev. 50, 100596 (2023).
Article MathSciNet Google Scholar
Sunitha, P., Uma, B., Channakeshava, S. & Babu, S. A fully labelled image dataset of banana leaves deficient in nutrients. Data Brief 48, 109155 (2023).
Article Google Scholar
Tuesta-Monteza, V. A., Mejia-Cabrera, H. I. & Arcila-Diaz, J. CoLeaf-DB: Peruvian coffee leaf images dataset for coffee leaf nutritional deficiencies detection and classification. Data Brief 48, 109226 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chungcharoen, T. et al. Machine learning-based prediction of nutritional status in oil palm leaves using proximal multispectral images. Comput. Electron. Agric. 198, 107019 (2022).
Article Google Scholar
Bhavya, T., Seggam, R. & Jatoth, R.K. Fertilizer recommendation for rice crop based on NPK nutrient deficiency using deep neural networks and random forest algorithm. In 2023 3rd International Conference on Artificial Intelligence and Signal Processing (AISP). 15 (IEEE, 2023).
Dey, B., Haque, M. M. U., Khatun, R. & Ahmed, R. Comparative performance of four CNN-based deep learning variants in detecting Hispa pest, two fungal diseases, and npk deficiency symptoms of rice (Oryza sativa). Comput. Electron. Agric. 202, 107340 (2022).
Article Google Scholar
Cevallos, C., Ponce, H., Moya-Albor, E. & Brieva, J. Vision-based analysis on leaves of tomato crops for classifying nutrient deficiency using convolutional neural networks. In 2020 International Joint Conference on Neural Networks (IJCNN). 17 (IEEE, 2020).
Espejo-Garcia, B., Malounas, I., Mylonas, N., Kasimati, A. & Fountas, S. Using Efficientnet and transfer learning for image-based diagnosis of nutrient deficiencies. Comput. Electron. Agric. 196, 106868 (2022).
Article Google Scholar
Wang, C., Ye, Y., Tian, Y. & Yu, Z. Classification of nutrient deficiency in rice based on cnn model with reinforcement learning augmentation. In 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM). 107111 (IEEE, 2021).
Bahtiar, A.R., Santoso, A.J., Juhariah, J. etal. Deep learning detected nutrient deficiency in chili plant. In 2020 8th International Conference on Information and Communication Technology (ICoICT). 14 (IEEE, 2020).
Rahadiyan, D., Hartati, S., Nugroho, A.P. etal. Feature aggregation for nutrient deficiency identification in chili based on machine learning. Artif. Intell. Agric. (2023).
Aishwarya, M. & Reddy, P. Ensemble of CNN models for classification of groundnut plant leaf disease detection. Smart Agric. Technol. 100362 (2023).
Nadafzadeh, M. et al. Design, fabrication and evaluation of a robot for plant nutrient monitoring in greenhouse (case study: iron nutrient in spinach). Comput. Electron. Agric. 217, 108579 (2024).
Article Google Scholar
Desiderio, J. M.H., Tenorio, A. J.F. & Manlises, C.O. Health classification system of romaine lettuce plants in hydroponic setup using convolutional neural networks (CNN). In 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). 16 (IEEE, 2022).
Costa, L., Kunwar, S., Ampatzidis, Y. & Albrecht, U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis. Agric. 122 (2022).
Lanjewar, M.G. & Parab, J.S. CNN and transfer learning methods with augmentation for citrus leaf diseases detection using PaaS cloud on mobile. Multimed. Tools Appl. 126 (2023).
Lanjewar, M.G., Morajkar, P. P. Modified transfer learning frameworks to identify potato leaf diseases. Multimed. Tools Appl. 123 (2023).
Dissanayake, A. etal. Detection of diseases and nutrition in bell pepper. In 2023 5th International Conference on Advancements in Computing (ICAC). 286291 (IEEE, 2023).
Wu, Z., Jiang, F. & Cao, R. Research on recognition method of leaf diseases of woody fruit plants based on transfer learning. Sci. Rep. 12, 15385 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Liu, H., Lv, H., Li, J., Liu, Y. & Deng, L. Research on maize disease identification methods in complex environments based on cascade networks and two-stage transfer learning. Sci. Rep. 12, 18914 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Kukreja, V., Sharma, R., Vats, S. & Manwal, M. DeepLeaf: Revolutionizing rice disease detection and classification using convolutional neural networks and random forest hybrid model. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). 16 (IEEE, 2023).
Bezabih, Y. A., Salau, A. O., Abuhayi, B. M., Mussa, A. A. & Ayalew, A. M. CPD-CCNN: Classification of pepper disease using a concatenation of convolutional neural network models. Sci. Rep. 13, 15581 (2023).
Article ADS CAS Google Scholar
Kini, A. S., Prema, K. & Pai, S. N. Early stage black pepper leaf disease prediction based on transfer learning using convnets. Sci. Rep. 14, 1404 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Wu, Q. et al. A classification method for soybean leaf diseases based on an improved convnext model. Sci. Rep. 13, 19141 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Ma, X., Chen, W. & Xu, Y. ERCP-Net: A channel extension residual structure and adaptive channel attention mechanism for plant leaf disease classification network. Sci. Rep. 14, 4221 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Babatunde, R. S. et al. A novel smartphone application for early detection of habanero disease. Sci. Rep. 14, 1423 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Nagasubramanian, G. et al. Ensemble classification and IoT-based pattern recognition for crop disease monitoring system. IEEE Internet Things J. 8, 1284712854 (2021).
Article Google Scholar
Nachtigall, L.G., Araujo, R.M. & Nachtigall, G.R. Classification of apple tree disorders using convolutional neural networks. In 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI). 472476 (IEEE, 2016).
Borhani, Y., Khoramdel, J. & Najafi, E. A deep learning based approach for automated plant disease classification using vision transformer. Sci. Rep. 12, 11554 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Aishwarya, M. & Reddy, A. P. Dataset of groundnut plant leaf images for classification and detection. Data Brief 48, 109185 (2023).
Article Google Scholar
Shi, J. et al. Cervical cell classification with graph convolutional network. Comput. Methods Prog. Biomed. 198, 105807 (2021).
Article Google Scholar
Fahad, N.M., Azam, S., Montaha, S. & Mukta, M. S.H. Enhancing cervical cancer diagnosis with graph convolution network: AI-powered segmentation, feature analysis, and classification for early detection. Multimed. Tools Appl. 125 (2024).
Lanjewar, M. G., Panchbhai, K. G. & Patle, L. B. Fusion of transfer learning models with LSTM for detection of breast cancer using ultrasound images. Comput. Biol. Med. 169, 107914 (2024).
Article CAS PubMed Google Scholar
He, K., Zhang, X., Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 19041916 (2015).
Article PubMed Google Scholar
Szegedy, C. etal. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 19 (2015).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 28182826 (2016).
Chollet, F. Xception: Deep learning with depthwise separable convolutions. In IEEE Conference on Computer Vision Pattern Recognition. 12511258 (2017).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 770778 (2016).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. MobileNetv2: Inverted residuals and linear bottlenecks. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 45104520 (2018).
Bera, A., Nasipuri, M., Krejcar, O. & Bhattacharjee, D. Fine-grained sports, yoga, and dance postures recognition: A benchmark analysis. IEEE Trans. Instrum. Meas. 72, 113 (2023).
Article Google Scholar
Bera, A., Wharton, Z., Liu, Y., Bessis, N. & Behera, A. Attend and guide (AG-Net): A keypoints-driven attention-based deep network for image recognition. IEEE Trans. Image Process. 30, 36913704 (2021).
Article ADS PubMed Google Scholar
Singh, D. etal. PlantDoc: A dataset for visual plant disease detection. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 249253 (ACM, 2020).
Hameed, Z., Garcia-Zapirain, B., Aguirre, J. J. & Isaza-Ruget, M. A. Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network. Sci. Rep. 12, 15600 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Shabrina, N. H. et al. A novel dataset of potato leaf disease in uncontrolled environment. Data Brief 52, 109955 (2024).
See more here:
PND-Net: plant nutrition deficiency and disease classification using graph convolutional network | Scientific Reports - Nature.com
- Machine learning identifies statin and phenothiazine combo for neuroblastoma treatment - Medical Xpress - December 29th, 2025 [December 29th, 2025]
- Machine Learning Framework Developed to Align Educational Curricula with Workforce Needs - geneonline.com - December 29th, 2025 [December 29th, 2025]
- Study Develops Multimodal Machine Learning System to Evaluate Physical Education Effectiveness - geneonline.com - December 29th, 2025 [December 29th, 2025]
- AI Indicators Detect Buy Opportunity in Everest Organics Limited - Healthcare Stock Analysis & Smarter Trades Backed by Machine Learning -... - December 29th, 2025 [December 29th, 2025]
- Automated Fractal Analysis of Right and Left Condyles on Digital Panoramic Images Among Patients With Temporomandibular Disorder (TMD) and Use of... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Gayatri Highways Limited Uptick - Inflation Impact on Stocks & Fast Profit Trading Ideas - bollywoodhelpline.com - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Punjab Chemicals and Crop Protection Limited Uptick - Blue Chip Stock Analysis & Double Or Triple Investment -... - December 29th, 2025 [December 29th, 2025]
- Machine Learning Models Forecast Walchand PeopleFirst Limited Uptick - Risk Adjusted Returns & Investment Recommendations You Can Trust -... - December 27th, 2025 [December 27th, 2025]
- Machine learning helps robots see clearly in total darkness using infrared - Tech Xplore - December 27th, 2025 [December 27th, 2025]
- Momentum Traders Eye Manas Properties Limited for Quick Bounce - Market Sentiment Report & Smarter Trades Backed by Machine Learning -... - December 27th, 2025 [December 27th, 2025]
- Machine Learning Models Forecast Bigbloc Construction Limited Uptick - MACD Trading Signals & Minimal Risk High Reward - bollywoodhelpline.com - December 27th, 2025 [December 27th, 2025]
- Avoid These 10 Machine Learning Project Mistakes - Analytics Insight - December 27th, 2025 [December 27th, 2025]
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]