PND-Net: plant nutrition deficiency and disease classification using graph convolutional network | Scientific Reports – Nature.com
Jung, M. et al. Construction of deep learning-based disease detection model in plants. Sci. Rep. 13, 7331 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Aiswarya, J., Mariammal, K. & Veerappan, K. Plant nutrient deficiency detection and classification-a review. In 2023 5th International Conference Inventive Research in Computing Applications (ICIRCA). 796802 (IEEE, 2023).
Yan, Q., Lin, X., Gong, W., Wu, C. & Chen, Y. Nutrient deficiency diagnosis of plants based on transfer learning and lightweight convolutional neural networks Mobilenetv3-large. In Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition. 2633 (2022).
Sudhakar, M. & Priya, R. Computer vision based machine learning and deep learning approaches for identification of nutrient deficiency in crops: A survey. Nat. Environ. Pollut. Technol. 22 (2023).
Noon, S. K., Amjad, M., Qureshi, M. A. & Mannan, A. Use of deep learning techniques for identification of plant leaf stresses: A review. Sustain. Comput. Inform. Syst. 28, 100443 (2020).
Google Scholar
Waheed, H. et al. Deep learning based disease, pest pattern and nutritional deficiency detection system for Zingiberaceae crop. Agriculture 12, 742 (2022).
Article Google Scholar
Barbedo, J. G. A. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agric. 162, 482492 (2019).
Article Google Scholar
Shadrach, F. D., Kandasamy, G., Neelakandan, S. & Lingaiah, T. B. Optimal transfer learning based nutrient deficiency classification model in ridge gourd (Luffa acutangula). Sci. Rep. 13, 14108 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Sathyavani, R., JaganMohan, K. & Kalaavathi, B. Classification of nutrient deficiencies in rice crop using DenseNet-BC. Mater. Today Proc. 56, 17831789 (2022).
Article CAS Google Scholar
Haris, S., Sai, K.S., Rani, N.S. etal. Nutrient deficiency detection in mobile captured guava plants using light weight deep convolutional neural networks. In 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC). 11901193 (IEEE, 2023).
Munir, S., Seminar, K.B., Sukoco, H. etal. The application of smart and precision agriculture (SPA) for measuring leaf nitrogen content of oil palm in peat soil areas. In 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). 650655 (IEEE, 2023).
Lu, J., Peng, K., Wang, Q. & Sun, C. Lettuce plant trace-element-deficiency symptom identification via machine vision methods. Agriculture 13, 1614 (2023).
Article CAS Google Scholar
Omer, S.M., Ghafoor, K.Z. & Askar, S.K. Lightweight improved YOLOv5 model for cucumber leaf disease and pest detection based on deep learning. In Signal, Image and Video Processing. 114 (2023).
Kumar, A. & Bhowmik, B. Automated rice leaf disease diagnosis using CNNs. In 2023 IEEE Region 10 Symposium (TENSYMP). 16 (IEEE, 2023).
Senjaliya, H. etal. A comparative study on the modern deep learning architectures for predicting nutritional deficiency in rice plants. In 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET). 16 (IEEE, 2023).
Ennaji, O., Vergutz, L. & ElAllali, A. Machine learning in nutrient management: A review. Artif. Intell. Agric. (2023).
Rathnayake, D., Kumarasinghe, K., Rajapaksha, R. & Katuwawala, N. Green insight: A novel approach to detecting and classifying macro nutrient deficiencies in paddy leaves. In 2023 8th International Conference Information Technology Research (ICITR). 16 (IEEE, 2023).
Asaari, M. S.M., Shamsudin, S. & Wen, L.J. Detection of plant stress condition with deep learning based detection models. In 2023 International Conference on Energy, Power, Environment, Control, and Computing (ICEPECC). 15 (IEEE, 2023).
Tavanapong, W. et al. Artificial intelligence for colonoscopy: Past, present, and future. IEEE J. Biomed. Health Inform. 26, 39503965 (2022).
Article PubMed PubMed Central Google Scholar
Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (2017).
Zhang, S., Tong, H., Xu, J. & Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 6, 123 (2019).
Article Google Scholar
Bera, A., Wharton, Z., Liu, Y., Bessis, N. & Behera, A. SR-GNN: Spatial relation-aware graph neural network for fine-grained image categorization. IEEE Trans. Image Process. 31, 60176031 (2022).
Article ADS Google Scholar
Qu, Z., Yao, T., Liu, X. & Wang, G. A graph convolutional network based on univariate neurodegeneration biomarker for Alzheimers disease diagnosis. IEEE J. Transl. Eng. Health Med. (2023).
Khlifi, M. K., Boulila, W. & Farah, I. R. Graph-based deep learning techniques for remote sensing applications: Techniques, taxonomy, and applicationsA comprehensive review. Comput. Sci. Rev. 50, 100596 (2023).
Article MathSciNet Google Scholar
Sunitha, P., Uma, B., Channakeshava, S. & Babu, S. A fully labelled image dataset of banana leaves deficient in nutrients. Data Brief 48, 109155 (2023).
Article Google Scholar
Tuesta-Monteza, V. A., Mejia-Cabrera, H. I. & Arcila-Diaz, J. CoLeaf-DB: Peruvian coffee leaf images dataset for coffee leaf nutritional deficiencies detection and classification. Data Brief 48, 109226 (2023).
Article CAS PubMed PubMed Central Google Scholar
Chungcharoen, T. et al. Machine learning-based prediction of nutritional status in oil palm leaves using proximal multispectral images. Comput. Electron. Agric. 198, 107019 (2022).
Article Google Scholar
Bhavya, T., Seggam, R. & Jatoth, R.K. Fertilizer recommendation for rice crop based on NPK nutrient deficiency using deep neural networks and random forest algorithm. In 2023 3rd International Conference on Artificial Intelligence and Signal Processing (AISP). 15 (IEEE, 2023).
Dey, B., Haque, M. M. U., Khatun, R. & Ahmed, R. Comparative performance of four CNN-based deep learning variants in detecting Hispa pest, two fungal diseases, and npk deficiency symptoms of rice (Oryza sativa). Comput. Electron. Agric. 202, 107340 (2022).
Article Google Scholar
Cevallos, C., Ponce, H., Moya-Albor, E. & Brieva, J. Vision-based analysis on leaves of tomato crops for classifying nutrient deficiency using convolutional neural networks. In 2020 International Joint Conference on Neural Networks (IJCNN). 17 (IEEE, 2020).
Espejo-Garcia, B., Malounas, I., Mylonas, N., Kasimati, A. & Fountas, S. Using Efficientnet and transfer learning for image-based diagnosis of nutrient deficiencies. Comput. Electron. Agric. 196, 106868 (2022).
Article Google Scholar
Wang, C., Ye, Y., Tian, Y. & Yu, Z. Classification of nutrient deficiency in rice based on cnn model with reinforcement learning augmentation. In 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM). 107111 (IEEE, 2021).
Bahtiar, A.R., Santoso, A.J., Juhariah, J. etal. Deep learning detected nutrient deficiency in chili plant. In 2020 8th International Conference on Information and Communication Technology (ICoICT). 14 (IEEE, 2020).
Rahadiyan, D., Hartati, S., Nugroho, A.P. etal. Feature aggregation for nutrient deficiency identification in chili based on machine learning. Artif. Intell. Agric. (2023).
Aishwarya, M. & Reddy, P. Ensemble of CNN models for classification of groundnut plant leaf disease detection. Smart Agric. Technol. 100362 (2023).
Nadafzadeh, M. et al. Design, fabrication and evaluation of a robot for plant nutrient monitoring in greenhouse (case study: iron nutrient in spinach). Comput. Electron. Agric. 217, 108579 (2024).
Article Google Scholar
Desiderio, J. M.H., Tenorio, A. J.F. & Manlises, C.O. Health classification system of romaine lettuce plants in hydroponic setup using convolutional neural networks (CNN). In 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). 16 (IEEE, 2022).
Costa, L., Kunwar, S., Ampatzidis, Y. & Albrecht, U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis. Agric. 122 (2022).
Lanjewar, M.G. & Parab, J.S. CNN and transfer learning methods with augmentation for citrus leaf diseases detection using PaaS cloud on mobile. Multimed. Tools Appl. 126 (2023).
Lanjewar, M.G., Morajkar, P. P. Modified transfer learning frameworks to identify potato leaf diseases. Multimed. Tools Appl. 123 (2023).
Dissanayake, A. etal. Detection of diseases and nutrition in bell pepper. In 2023 5th International Conference on Advancements in Computing (ICAC). 286291 (IEEE, 2023).
Wu, Z., Jiang, F. & Cao, R. Research on recognition method of leaf diseases of woody fruit plants based on transfer learning. Sci. Rep. 12, 15385 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Liu, H., Lv, H., Li, J., Liu, Y. & Deng, L. Research on maize disease identification methods in complex environments based on cascade networks and two-stage transfer learning. Sci. Rep. 12, 18914 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Kukreja, V., Sharma, R., Vats, S. & Manwal, M. DeepLeaf: Revolutionizing rice disease detection and classification using convolutional neural networks and random forest hybrid model. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT). 16 (IEEE, 2023).
Bezabih, Y. A., Salau, A. O., Abuhayi, B. M., Mussa, A. A. & Ayalew, A. M. CPD-CCNN: Classification of pepper disease using a concatenation of convolutional neural network models. Sci. Rep. 13, 15581 (2023).
Article ADS CAS Google Scholar
Kini, A. S., Prema, K. & Pai, S. N. Early stage black pepper leaf disease prediction based on transfer learning using convnets. Sci. Rep. 14, 1404 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Wu, Q. et al. A classification method for soybean leaf diseases based on an improved convnext model. Sci. Rep. 13, 19141 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Ma, X., Chen, W. & Xu, Y. ERCP-Net: A channel extension residual structure and adaptive channel attention mechanism for plant leaf disease classification network. Sci. Rep. 14, 4221 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Babatunde, R. S. et al. A novel smartphone application for early detection of habanero disease. Sci. Rep. 14, 1423 (2024).
Article ADS CAS PubMed PubMed Central Google Scholar
Nagasubramanian, G. et al. Ensemble classification and IoT-based pattern recognition for crop disease monitoring system. IEEE Internet Things J. 8, 1284712854 (2021).
Article Google Scholar
Nachtigall, L.G., Araujo, R.M. & Nachtigall, G.R. Classification of apple tree disorders using convolutional neural networks. In 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI). 472476 (IEEE, 2016).
Borhani, Y., Khoramdel, J. & Najafi, E. A deep learning based approach for automated plant disease classification using vision transformer. Sci. Rep. 12, 11554 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Aishwarya, M. & Reddy, A. P. Dataset of groundnut plant leaf images for classification and detection. Data Brief 48, 109185 (2023).
Article Google Scholar
Shi, J. et al. Cervical cell classification with graph convolutional network. Comput. Methods Prog. Biomed. 198, 105807 (2021).
Article Google Scholar
Fahad, N.M., Azam, S., Montaha, S. & Mukta, M. S.H. Enhancing cervical cancer diagnosis with graph convolution network: AI-powered segmentation, feature analysis, and classification for early detection. Multimed. Tools Appl. 125 (2024).
Lanjewar, M. G., Panchbhai, K. G. & Patle, L. B. Fusion of transfer learning models with LSTM for detection of breast cancer using ultrasound images. Comput. Biol. Med. 169, 107914 (2024).
Article CAS PubMed Google Scholar
He, K., Zhang, X., Ren, S. & Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 19041916 (2015).
Article PubMed Google Scholar
Szegedy, C. etal. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 19 (2015).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 28182826 (2016).
Chollet, F. Xception: Deep learning with depthwise separable convolutions. In IEEE Conference on Computer Vision Pattern Recognition. 12511258 (2017).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 770778 (2016).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. MobileNetv2: Inverted residuals and linear bottlenecks. In Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition. 45104520 (2018).
Bera, A., Nasipuri, M., Krejcar, O. & Bhattacharjee, D. Fine-grained sports, yoga, and dance postures recognition: A benchmark analysis. IEEE Trans. Instrum. Meas. 72, 113 (2023).
Article Google Scholar
Bera, A., Wharton, Z., Liu, Y., Bessis, N. & Behera, A. Attend and guide (AG-Net): A keypoints-driven attention-based deep network for image recognition. IEEE Trans. Image Process. 30, 36913704 (2021).
Article ADS PubMed Google Scholar
Singh, D. etal. PlantDoc: A dataset for visual plant disease detection. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. 249253 (ACM, 2020).
Hameed, Z., Garcia-Zapirain, B., Aguirre, J. J. & Isaza-Ruget, M. A. Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network. Sci. Rep. 12, 15600 (2022).
Article ADS CAS PubMed PubMed Central Google Scholar
Shabrina, N. H. et al. A novel dataset of potato leaf disease in uncontrolled environment. Data Brief 52, 109955 (2024).
See more here:
PND-Net: plant nutrition deficiency and disease classification using graph convolutional network | Scientific Reports - Nature.com
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]
- Utilizing machine learning to predict MRI signal outputs from iron oxide nanoparticles through the PSLG algorithm - Nature - July 16th, 2025 [July 16th, 2025]
- Developing a machine-learning model to enable treatment selection for neoadjuvant chemotherapy for esophageal cancer - Nature - July 16th, 2025 [July 16th, 2025]
- Advancing crop recommendation system with supervised machine learning and explainable artificial intelligence - Nature - July 16th, 2025 [July 16th, 2025]
- Predicting clozapine-induced adverse drug reaction biomarkers using machine learning - Nature - July 16th, 2025 [July 16th, 2025]
- Postoperative complication severity prediction in penile prosthesis implantation: a machine learning-based predictive modeling study - Nature - July 16th, 2025 [July 16th, 2025]
- The Future of AI & Machine Learning: Perspective on Shaping Tomorrows Business Landscape - Vocal - July 16th, 2025 [July 16th, 2025]
- Machine Learning: Your Ticket to a Thriving Career in the Tech World - The Impressive Times - July 14th, 2025 [July 14th, 2025]
- Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal... - July 14th, 2025 [July 14th, 2025]
- Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics - Nature - July 14th, 2025 [July 14th, 2025]
- Development and validation of a machine learning-based nomogram for survival prediction of patients with hilar cholangiocarcinoma after... - July 12th, 2025 [July 12th, 2025]
- Geochemical-integrated machine learning approach predicts the distribution of cadmium speciation in European and Chinese topsoils - Nature - July 12th, 2025 [July 12th, 2025]
- Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma... - July 12th, 2025 [July 12th, 2025]
- Application of supervised machine learning and unsupervised data compression models for pore pressure prediction employing drilling, petrophysical,... - July 12th, 2025 [July 12th, 2025]
- Machine learning identifies lipid-associated genes and constructs diagnostic and prognostic models for idiopathic pulmonary fibrosis - Orphanet... - July 12th, 2025 [July 12th, 2025]
- An evaluation methodology for machine learning-based tandem mass spectra similarity prediction - BMC Bioinformatics - July 12th, 2025 [July 12th, 2025]
- The Rise of AI in Trading: Machine Learning and the Stock Market - Disruption Banking - July 12th, 2025 [July 12th, 2025]
- Integrative analysis identifies IL-6/JUN/MMP-9 pathway destroyed blood-brain-barrier in autism mice via machine learning and bioinformatic analysis -... - July 12th, 2025 [July 12th, 2025]
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]
- Machine learning-based identification of key factors and spatial heterogeneity analysis of urban flooding: a case study of the central urban area of... - July 10th, 2025 [July 10th, 2025]
- Developing machine learning frameworks to predict mechanical properties of ultra-high performance concrete mixed with various industrial byproducts -... - July 10th, 2025 [July 10th, 2025]
- Small Drones Market Trend Analysis and Forecast Report 2025-2034 | AI and Machine Learning Revolutionizing Autonomous Operations, Trade Tariffs Push... - July 10th, 2025 [July 10th, 2025]
- When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning - Dataconomy - July 10th, 2025 [July 10th, 2025]
- New Study Uses Gait Data and Machine Learning for Early Detection of Anxiety and Depression - AZoSensors - July 10th, 2025 [July 10th, 2025]
- Machine Learning and the Evolution of Mobile Apps - CIO Applications - July 10th, 2025 [July 10th, 2025]
- Artificial Intelligence, Machine Learning, and Big Data in Thailand: Legal and Regulatory Developments 2025 - Lexology - July 10th, 2025 [July 10th, 2025]
- Karen Hao on how the AI boom became a new imperial frontier - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Machine Learning and AI in Enhancing Image Analysis of 3D Samples - Drug Target Review - July 8th, 2025 [July 8th, 2025]
- Gartner Predicts Over 40% of Agentic AI Projects Will Be Canceled by End of 2027 - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Explainable machine learning model for predicting the transarterial chemoembolization response and subtypes of hepatocellular carcinoma patients - BMC... - July 8th, 2025 [July 8th, 2025]
- Identification and validation of glucocorticoid receptor and programmed cell death-related genes in spinal cord injury using machine learning - Nature - July 8th, 2025 [July 8th, 2025]
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]
- A robust machine learning approach to predicting remission and stratifying risk in rheumatoid arthritis patients treated with bDMARDs - Nature - July 6th, 2025 [July 6th, 2025]
- Ultrabroadband and band-selective thermal meta-emitters by machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Machine Learning is Surprisingly Good at Simulating the Universe - Universe Today - July 4th, 2025 [July 4th, 2025]
- Machine learning-assisted multi-dimensional transcriptomic analysis of cytoskeleton-related molecules and their relationship with prognosis in... - July 4th, 2025 [July 4th, 2025]
- Machine learning combined with multi-omics to identify immune-related LncRNA signature as biomarkers for predicting breast cancer prognosis - Nature - July 4th, 2025 [July 4th, 2025]
- Comprehensive machine learning analysis of PANoptosis signatures in multiple myeloma identifies prognostic and immunotherapy biomarkers - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing game outcome prediction in the Chinese basketball league through a machine learning framework based on performance data - Nature - July 4th, 2025 [July 4th, 2025]
- A novel double machine learning approach for detecting early breast cancer using advanced feature selection and dimensionality reduction techniques -... - July 4th, 2025 [July 4th, 2025]
- Machine learning for Parkinsons disease: a comprehensive review of datasets, algorithms, and challenges - Nature - July 4th, 2025 [July 4th, 2025]
- Cervical cancer prediction using machine learning models based on routine blood analysis - Nature - July 4th, 2025 [July 4th, 2025]
- Enhancing anomaly detection in IoT-driven factories using Logistic Boosting, Random Forest, and SVM: A comparative machine learning approach - Nature - July 4th, 2025 [July 4th, 2025]
- Predicting car accident severity in Northwest Ethiopia: a machine learning approach leveraging driver, environmental, and road conditions - Nature - July 4th, 2025 [July 4th, 2025]
- Sensormatic Solutions Adds Machine Learning to Shrink Analyzer - Ink World magazine - July 4th, 2025 [July 4th, 2025]
- Exploring the link between the ZJU index and sarcopenia in adults aged 2059 using NHANES and machine learning - Nature - July 4th, 2025 [July 4th, 2025]
- Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate... - July 2nd, 2025 [July 2nd, 2025]
- New insight into viscosity prediction of imidazolium-based ionic liquids and their mixtures with machine learning models - Nature - July 2nd, 2025 [July 2nd, 2025]
- Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application -... - July 2nd, 2025 [July 2nd, 2025]
- Advanced analysis of defect clusters in nuclear reactors using machine learning techniques - Nature - July 2nd, 2025 [July 2nd, 2025]
- Machine learning analysis of kinematic movement features during functional tasks to discriminate chronic neck pain patients from asymptomatic controls... - July 2nd, 2025 [July 2nd, 2025]
- Enhanced machine learning models for predicting three-year mortality in Non-STEMI patients aged 75 and above - BMC Geriatrics - July 2nd, 2025 [July 2nd, 2025]
- Modeling seawater intrusion along the Alabama coastline using physical and machine learning models to evaluate the effects of multiscale natural and... - July 2nd, 2025 [July 2nd, 2025]
- A comprehensive study based on machine learning models for early identification Mycoplasma pneumoniae infection in segmental/lobar pneumonia - Nature - July 2nd, 2025 [July 2nd, 2025]
- Identifying ovarian cancer with machine learning DNA methylation pattern analysis - Nature - July 2nd, 2025 [July 2nd, 2025]
- High-isolation dual-band MIMO antenna for next-generation 5G wireless networks at 28/38 GHz with machine learning-based gain prediction - Nature - July 2nd, 2025 [July 2nd, 2025]
- Sony and AMD want to focus on machine learning for the PS6 - Instant Gaming News - July 2nd, 2025 [July 2nd, 2025]
- How Machine Learning is Reshaping the Future of Sports Betting? - London Daily News - July 2nd, 2025 [July 2nd, 2025]
- An interpretable machine learning model for predicting depression in middle-aged and elderly cancer patients in China: a study based on the CHARLS... - July 2nd, 2025 [July 2nd, 2025]
- These Eight Projects Showcase the Power of Machine Learning on the Edge - Hackster.io - June 29th, 2025 [June 29th, 2025]
- Build Custom AI Tools for Your AI Agents that Combine Machine Learning and Statistical Analysis - MarkTechPost - June 29th, 2025 [June 29th, 2025]
- Check out these essential tips and trends for SEO in 2025 as AI and machine learning loom large - EdTech Innovation Hub - June 29th, 2025 [June 29th, 2025]
- Using machine learning to predict the severity of salmonella infection - Open Access Government - June 28th, 2025 [June 28th, 2025]
- How AI and machine learning are transforming drug discovery - Pharmaceutical Technology - June 28th, 2025 [June 28th, 2025]