Overview of causal inference in machine learning – Ericsson
In a major operators network control center complaints are flooding in. The network is down across a large US city; calls are getting dropped and critical infrastructure is slow to respond. Pulling up the systems event history, the manager sees that new 5G towers were installed in the affected area today.
Did installing those towers cause the outage, or was it merely a coincidence? In circumstances such as these, being able to answer this question accurately is crucial for Ericsson.
Most machine learning-based data science focuses on predicting outcomes, not understanding causality. However, some of the biggest names in the field agree its important to start incorporating causality into our AI and machine learning systems.
Yoshua Bengio, one of the worlds most highly recognized AI experts, explained in a recent Wired interview: Its a big thing to integrate [causality] into AI. Current approaches to machine learning assume that the trained AI system will be applied on the same kind of data as the training data. In real life it is often not the case.
Yann LeCun, a recent Turing Award winner, shares the same view, tweeting: Lots of people in ML/DL [deep learning] know that causal inference is an important way to improve generalization.
Causal inference and machine learning can address one of the biggest problems facing machine learning today that a lot of real-world data is not generated in the same way as the data that we use to train AI models. This means that machine learning models often arent robust enough to handle changes in the input data type, and cant always generalize well. By contrast, causal inference explicitly overcomes this problem by considering what might have happened when faced with a lack of information. Ultimately, this means we can utilize causal inference to make our ML models more robust and generalizable.
When humans rationalize the world, we often think in terms of cause and effect if we understand why something happened, we can change our behavior to improve future outcomes. Causal inference is a statistical tool that enables our AI and machine learning algorithms to reason in similar ways.
Lets say were looking at data from a network of servers. Were interested in understanding how changes in our network settings affect latency, so we use causal inference to proactively choose our settings based on this knowledge.
The gold standard for inferring causal effects is randomized controlled trials (RCTs) or A/B tests. In RCTs, we can split a population of individuals into two groups: treatment and control, administering treatment to one group and nothing (or a placebo) to the other and measuring the outcome of both groups. Assuming that the treatment and control groups arent too dissimilar, we can infer whether the treatment was effective based on the difference in outcome between the two groups.
However, we can't always run such experiments. Flooding half of our servers with lots of requests might be a great way to find out how response time is affected, but if theyre mission-critical servers, we cant go around performing DDOS attacks on them. Instead, we rely on observational datastudying the differences between servers that naturally get a lot of requests and those with very few requests.
There are many ways of answering this question. One of the most popular approaches is Judea Pearl's technique for using to statistics to make causal inferences. In this approach, wed take a model or graph that includes measurable variables that can affect one another, as shown below.
To use this graph, we must assume the Causal Markov Condition. Formally, it says that subject to the set of all its direct causes, a node is independent of all the variables which are not direct causes or direct effects of that node. Simply put, it is the assumption that this graph captures all the real relationships between the variables.
Another popular method for inferring causes from observational data is Donald Rubin's potential outcomes framework. This method does not explicitly rely on a causal graph, but still assumes a lot about the data, for example, that there are no additional causes besides the ones we are considering.
For simplicity, our data contains three variables: a treatment , an outcome , and a covariate . We want to know if having a high number of server requests affects the response time of a server.
In our example, the number of server requests is determined by the memory value: a higher memory usage means the server is less likely to get fed requests. More precisely, the probability of having a high number of requests is equal to 1 minus the memory value (i.e. P(x=1)=1-z , where P(x=1) is the probability that x is equal to 1). The response time of our system is determined by the equation (or hypothetical model):
y=1x+5z+
Where is the error, that is, the deviation from the expected value of given values of and depends on other factors not included in the model. Our goal is to understand the effect of on via observations of the memory value, number of requests, and response times of a number of servers with no access to this equation.
There are two possible assignments (treatment and control) and an outcome. Given a random group of subjects and a treatment, each subject has a pair of potential outcomes: and , the outcomes Y_i (0) and Y_i (1) under control and treatment respectively. However, only one outcome is observed for each subject, the outcome under the actual treatment received: Y_i=xY_i (1)+(1-x)Y_i (0). The opposite potential outcome is unobserved for each subject and is therefore referred to as a counterfactual.
For each subject, the effect of treatment is defined to be Y_i (1)-Y_i (0) . The average treatment effect (ATE) is defined as the average difference in outcomes between the treatment and control groups:
E[Y_i (1)-Y_i (0)]
Here, denotes an expectation over values of Y_i (1)-Y_i (0)for each subject , which is the average value across all subjects. In our network example, a correct estimate of the average treatment effect would lead us to the coefficient in front of x in equation (1) .
If we try to estimate this by directly subtracting the average response time of servers with x=0 from the average response time of our hypothetical servers with x=1, we get an estimate of the ATE as 0.177 . This happens because our treatment and control groups are not inherently directly comparable. In an RTC, we know that the two groups are similar because we chose them ourselves. When we have only observational data, the other variables (such as the memory value in our case) may affect whether or not one unit is placed in the treatment or control group. We need to account for this difference in the memory value between the treatment and control groups before estimating the ATE.
One way to correct this bias is to compare individual units in the treatment and control groups with similar covariates. In other words, we want to match subjects that are equally likely to receive treatment.
The propensity score ei for subject is defined as:
e_i=P(x=1z=z_i ),z_i[0,1]
or the probability that x is equal to 1the unit receives treatmentgiven that we know its covariate is equal to the value z_i. Creating matches based on the probability that a subject will receive treatment is called propensity score matching. To find the propensity score of a subject, we need to predict how likely the subject is to receive treatment based on their covariates.
The most common way to calculate propensity scores is through logistic regression:
Now that we have calculated propensity scores for each subject, we can do basic matching on the propensity score and calculate the ATE exactly as before. Running propensity score matching on the example network data gets us an estimate of 1.008 !
We were interested in understanding the causal effect of binary treatment x variable on outcome y . If we find that the ATE is positive, this means an increase in x results in an increase in y. Similarly, a negative ATE says that an increase in x will result in a decrease in y .
This could help us understand the root cause of an issue or build more robust machine learning models. Causal inference gives us tools to understand what it means for some variables to affect others. In the future, we could use causal inference models to address a wider scope of problems both in and out of telecommunications so that our models of the world become more intelligent.
Special thanks to the other team members of GAIA working on causality analysis: Wenting Sun, Nikita Butakov, Paul Mclachlan, Fuyu Zou, Chenhua Shi, Lule Yu and Sheyda Kiani Mehr.
If youre interested in advancing this field with us, join our worldwide team of data scientists and AI specialists at GAIA.
In this Wired article, Turing Award winner Yoshua Bengio shares why deep learning must begin to understand the why before it can replicate true human intelligence.
In this technical overview of causal inference in statistics, find out whats needed to evolve AI from traditional statistical analysis to causal analysis of multivariate data.
This journal essay from 1999 offers an introduction to the Causal Markov Condition.
Go here to read the rest:
Overview of causal inference in machine learning - Ericsson
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]