Orange isn’t building its own AI foundation model here’s why – Light Reading
There has been a flurry of interest in generative AI (GenAI) from telcos, each of which has taken its own nuanced approach to the idea of building its own large language models (LLMs). While Vodafone seems todismiss the ideaand Verizon appears content to build on existing foundation models, Deutsche Telekom and SK Telecomannounced last yearthey will develop telco-specific LLMs. Orange, meanwhile, doesn't currently see the need to build a foundation model, its chief AI officer Steve Jarrett has recently told Light Reading.
Jarrett said the company is currently content with using existing models and adapting them to its needs using two main approaches. The first one is retrieval-augmented generation (RAG), where a detailed source of information is passed to the model together with the prompt to augment its response.
He said this allows the company to experiment with different prompts easily, adding that existing methodologies can be used to assess the results. "That is a very, very easy way to dynamically test different models, different styles of structuring the RAG and the prompts. And [] that solves the majority of our needs today," he elaborated.
At the same time, Jarrett admitted that the downside of RAG is that it may require a lot of data to be passed along with the prompt, making more complex tasks slow and expensive. In such cases, he argued, fine-tuning is a more appropriate approach.
Distilling models
In this case, he explained, "you take the information that you would have used in the RAG for [] a huge problem area. And you make a new version of the underlying model that embeds all that information." Another related option is to distill the model.
This involves not just structuring the output of the model, but downsizing it, "like you're distilling fruit into alcohol," Jarrett said, adding "there are techniques to actually chop the model down into a much smaller model that runs much faster."
This approach is, however, highly challenging. "Even my most expert people frequently make mistakes," he admitted, saying: "It's not simple, and the state of the art of the tools to fine tune are changing every single day." At the same time, he noted that these tools are improving constantly and, as a result, he expects fine-tuning to get easier over time.
He pointed out that building a foundation model from scratch would be an even more complex task, which the company currently doesn't see a reason to embark on. Nevertheless, he stressed that it's impossible to predict how things will evolve in the future.
Complexity budget
One possibility is that big foundational models will eventually absorb so much information that the need for RAG and other tools will diminish. In this scenario, Orange may never have to create its own foundation model, Jarrett said, "as long as we have the ability to distill and fine tune models, where we need to, to make the model small enough to run faster and cheaper and so on."
He added: "I think it's a very open question in the industry. In the end, will we have a handful of massive models, and everyone's doing 99% RAG and prompt engineering, or are there going to be millions of distilled and fine-tuned models?"
One factor that may determine where things will go in the future is what Jarrett calls the complexity budget. This is a concept that conveys how much computing was needed from start to finish to produce an answer.
While a very large model may be more intensive to train in the beginning, there may be less computing required for RAG and fine-tuning. "The other approach is you have a large language model that also obviously took a lot of training, but then you do a ton more compute to fine tune and distill the model so that your model is much smaller," he added.
Apart from cost, there is also an environmental concern. While hyperscalers tend to perform relatively well in terms of using clean energy, and Jarrett claimed that Orange is "fairly green as a company," he added that the carbon intensity of the energy used for on-premises GPU clusters tends to vary in the industry.
Right tool for the job
The uncertainty surrounding GenAI's future evolution is one of the reasons why Orange is taking a measured approach to the technology, with Jarrett stressing it is not a tool that's suited to every job. "You don't want to use the large language model sledge hammer to hit every nail," he said.
"I think, fairly uniquely compared to most other telco operators, we actually have the ability, the skill inside of Orange to help make these decisions about what tool to use when. So we prefer to use a statistical method or basic machine learning to solve problems because those results are more [] explainable. They're usually cheaper, and they're usually less impactful on the environment," he added.
In fact, Jarrett says one of the things Orange is investigating at the moment is how to use multiple AI models together to solve problems. The notion, he added, is called agents, and refers to a high-level abstraction of a problem, such as asking how the network in France is working on a given day. This, he said, will enable the company to solve complex problems more dynamically.
In the meantime, the company is making a range of GenAI models available to its employees, including ChatGPT, Dolly and Mistral. To do so, it has built a solution that Jarrett says provides a "secure, European-resident version of leading AI models that we make available to the entire company."
Improving customer service
Jarrett says this is a more controlled and safer way for employees to use models than if they were accessed directly. The solution also notifies the employee of the cost of running a specific model to answer a question. Available for several months, it has so far been used by 12% of employees.
Orange has already deployed GenAI in many countries within its customer service solutions to predict what the most appealing offer may be to an individual customer, Jarrett said, adding "what we're trialling right now is can generative AI help us to customize and personalize the text of that offer? Does that make the offer incrementally more appealing?"
Another potential use case is in transcribing a conversation with a customer care agent in real time, using generative AI to create prompts. The tool is still in development but could help new recruits to improve faster, raising employee and customer satisfaction, said Jarrett.
While Orange doesn't currently use GenAI for any use cases in the network, some are under development, although few details are being shared at this stage. One use case involves predicting when batteries at cell sites may need replacing.
Jarrett admits, however, that GenAI is still facing a number of challenges, such as hallucinations. "In a scenario where the outputs have to be correct 100% of the time, we're not going to use generative AI for that today, because [it's] not correct 100% of the time," he said.
Dealing with hallucinations
Yet it can be applied in areas that are less sensitive. "For example, if for internal use you want to have a summary of an enormous transcript of a long meeting that you missed, it's okay if the model hallucinates a little bit," he added.
Hallucinations cannot be stopped entirely and will likely continue to be a problem for some time, said Jarrett. But he believes RAG and fine-tuning could mitigate the issue to some extent.
"The majority of the time, if we're good at prompt engineering and we're good at passing the appropriate information with the response, the model generates very, very useful, relevant answers," Jarrett said about the results achieved with RAG.
The availability and quality of data is another issue that is often discussed, and also one that Orange is trying to address. Using data historically kept in separate silos has been difficult, said Jarrett. "[The] availability of the data from the marketing team to be able to run a campaign on where was our network relatively strong, for example those use cases were either impossible, or took many, many, many months of manual meetings and collaboration."
As a result, the company is trying to create a marketplace where data is made widely available inside each country and appropriately labeled. Orange calls this approach data democracy.
Continued here:
Orange isn't building its own AI foundation model here's why - Light Reading
- Machine-Learning Approach to Increase the Potency and Overcome the Hemolytic Toxicity of Gramicidin S - ACS Publications - July 24th, 2025 [July 24th, 2025]
- Machine learning-based academic performance prediction with explainability for enhanced decision-making in educational institutions - Nature - July 24th, 2025 [July 24th, 2025]
- Can External Validation Tools Can Improve Annotation Quality for LLM-as-a-Judge - Apple Machine Learning Research - July 24th, 2025 [July 24th, 2025]
- How to use learning curves to evaluate the sample size for malaria prediction models developed using machine learning algorithms - Malaria Journal - July 24th, 2025 [July 24th, 2025]
- Development and validation of a dynamic early warning system with time-varying machine learning models for predicting hemodynamic instability in... - July 24th, 2025 [July 24th, 2025]
- Early and non-destructive prediction of the differentiation efficiency of human induced pluripotent stem cells using imaging and machine learning -... - July 24th, 2025 [July 24th, 2025]
- Algorithmica Reports 35% Return in First Fiscal Year, Driven by Machine Learning Trading Technology - PR Newswire - July 24th, 2025 [July 24th, 2025]
- New research using machine learning further links increase in earthquakes, quake intensity, in Raton Basin to wastewater injections - The... - July 24th, 2025 [July 24th, 2025]
- Early modern text transcription revolutionized by ethical machine learning tools - Archaeology News Online Magazine - July 22nd, 2025 [July 22nd, 2025]
- Role of Artificial Intelligence and Machine Learning in Conservative Dentistry and Endodontics: A Review - Cureus - July 22nd, 2025 [July 22nd, 2025]
- NTT Researchers Advance AI and Machine Learning Accuracy, Security and Cost Effectiveness at ICML 2025 - Business Wire - July 22nd, 2025 [July 22nd, 2025]
- Exploring Phase Stability and Transport Properties of Emerging Thermoelectric Materials: Machine Learning and Experimental Insights - ACS Publications - July 22nd, 2025 [July 22nd, 2025]
- Google expands Ad Manager partner guidelines with machine learning restrictions - PPC Land - July 22nd, 2025 [July 22nd, 2025]
- Leveraging Generative AI into Wargaming and Machine Learning to Shape War Termination Scenarios in Ukraine - oodaloop.com - July 22nd, 2025 [July 22nd, 2025]
- Predictive AI Too Hard To Use? GenAI Makes It Easy - Machine Learning Week 2025 - July 22nd, 2025 [July 22nd, 2025]
- Wheat is becoming more climate-resilient through nature-based plant breeding and machine learning - Phys.org - July 22nd, 2025 [July 22nd, 2025]
- Machine learning enhanced ultra-high vacuum system for predicting field emission performance in graphene reinforced aluminium based metal matrix... - July 22nd, 2025 [July 22nd, 2025]
- Machine learning-guided evolution of pyrrolysyl-tRNA synthetase for improved incorporation efficiency of diverse noncanonical amino acids - Nature - July 22nd, 2025 [July 22nd, 2025]
- Dietary intervention optimized using machine learning could lower risk of dementia - Medical Xpress - July 20th, 2025 [July 20th, 2025]
- Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia - Nature - July 20th, 2025 [July 20th, 2025]
- From Reactive to Predictive: Forecasting Network Congestion with Machine Learning and INT - Towards Data Science - July 20th, 2025 [July 20th, 2025]
- Artificial intelligence and machine learning in the development of vaccines and immunotherapeuticsyesterday, today, and tomorrow - Frontiers - July 20th, 2025 [July 20th, 2025]
- How Machine Learning is Revolutionizing Threat Detection for Businesses in Real-Time - Eye On Annapolis - July 20th, 2025 [July 20th, 2025]
- Identification of clinical diagnostic and immune cell infiltration characteristics of acute myocardial infarction with machine learning approach -... - July 20th, 2025 [July 20th, 2025]
- Predicting the mechanical performance of industrial waste incorporated sustainable concrete using hybrid machine learning modeling and parametric... - July 20th, 2025 [July 20th, 2025]
- Integrative multi-omics and machine learning reveal critical functions of proliferating cells in prognosis and personalized treatment of lung... - July 20th, 2025 [July 20th, 2025]
- Systematic measurement and machine learning-based profile characterization of community noise in a medium-large city in the United States - Nature - July 20th, 2025 [July 20th, 2025]
- Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligence - Nature - July 20th, 2025 [July 20th, 2025]
- A comprehensive machine learning for high throughput Tuberculosis sequence analysis, functional annotation, and visualization - Nature - July 20th, 2025 [July 20th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - The National Law Review - July 20th, 2025 [July 20th, 2025]
- Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer - Frontiers - July 20th, 2025 [July 20th, 2025]
- Inversion and validation of soil water-holding capacity in a wild fruit forest, using hyperspectral technology combined with machine learning - Nature - July 20th, 2025 [July 20th, 2025]
- Machine Learning in Drug Discovery Market to Witness Exponential Growth: Key Players, $250M Eli Lilly Deal & Regional Insights for 2025-2034 -... - July 18th, 2025 [July 18th, 2025]
- Automated seafood freshness detection and preservation analysis using machine learning and paper-based pH sensors - Nature - July 18th, 2025 [July 18th, 2025]
- Do You Know What It Means To Train a Machine Learning Model? - LSU - July 18th, 2025 [July 18th, 2025]
- Establishment of an interpretable MRI radiomics-based machine learning model capable of predicting axillary lymph node metastasis in invasive breast... - July 18th, 2025 [July 18th, 2025]
- A Machine Learning-Reconstructed Dataset of River Discharge, Temperature, and Heat Flux into the Arctic Ocean - Nature - July 18th, 2025 [July 18th, 2025]
- Leveraging computational linguistics and machine learning for detection of ultra-high risk of mental health disorders in youths | Schizophrenia -... - July 18th, 2025 [July 18th, 2025]
- Development and validation of machine learning-based diagnostic models using blood transcriptomics for early childhood diabetes prediction - Frontiers - July 18th, 2025 [July 18th, 2025]
- Fatigue and stamina prediction of athletic person on track using thermal facial biomarkers and optimized machine learning algorithm - Nature - July 18th, 2025 [July 18th, 2025]
- Identifying the crucial oncogenic mechanisms of DDX56 based on a machine learning-based integration model of RNA-binding proteins - Nature - July 18th, 2025 [July 18th, 2025]
- AI and Machine Learning Skills Are Make or Break for Developers: 71% of Tech Leaders Wont Hire Without Them - Yahoo Finance - July 18th, 2025 [July 18th, 2025]
- Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression - Nature - July 18th, 2025 [July 18th, 2025]
- Prognosis of air quality index and air pollution using machine learning techniques - Nature - July 18th, 2025 [July 18th, 2025]
- Integrating vision transformer-based deep learning model with kernel extreme learning machine for non-invasive diagnosis of neonatal jaundice using... - July 18th, 2025 [July 18th, 2025]
- PlayStation 6 Likely to Feature 24 GB RAM for Advanced Ray Tracing and Machine Learning Without Raising Costs - Wccftech - July 18th, 2025 [July 18th, 2025]
- Machine Learning-Assisted Iterative Screening for Efficient Detection of Drug Discovery Starting Points - ACS Publications - July 16th, 2025 [July 16th, 2025]
- 2025 IT Camp on AI & Machine Learning for Beginners to be held August 5 - Southeastern Oklahoma State University - July 16th, 2025 [July 16th, 2025]
- Utilizing machine learning to predict MRI signal outputs from iron oxide nanoparticles through the PSLG algorithm - Nature - July 16th, 2025 [July 16th, 2025]
- Developing a machine-learning model to enable treatment selection for neoadjuvant chemotherapy for esophageal cancer - Nature - July 16th, 2025 [July 16th, 2025]
- Advancing crop recommendation system with supervised machine learning and explainable artificial intelligence - Nature - July 16th, 2025 [July 16th, 2025]
- Predicting clozapine-induced adverse drug reaction biomarkers using machine learning - Nature - July 16th, 2025 [July 16th, 2025]
- Postoperative complication severity prediction in penile prosthesis implantation: a machine learning-based predictive modeling study - Nature - July 16th, 2025 [July 16th, 2025]
- The Future of AI & Machine Learning: Perspective on Shaping Tomorrows Business Landscape - Vocal - July 16th, 2025 [July 16th, 2025]
- Machine Learning: Your Ticket to a Thriving Career in the Tech World - The Impressive Times - July 14th, 2025 [July 14th, 2025]
- Integrative analysis of multi-omics data and gut microbiota composition reveals prognostic subtypes and predicts immunotherapy response in colorectal... - July 14th, 2025 [July 14th, 2025]
- Comprehensive multi-omics and machine learning framework for glioma subtyping and precision therapeutics - Nature - July 14th, 2025 [July 14th, 2025]
- Development and validation of a machine learning-based nomogram for survival prediction of patients with hilar cholangiocarcinoma after... - July 12th, 2025 [July 12th, 2025]
- Geochemical-integrated machine learning approach predicts the distribution of cadmium speciation in European and Chinese topsoils - Nature - July 12th, 2025 [July 12th, 2025]
- Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma... - July 12th, 2025 [July 12th, 2025]
- Application of supervised machine learning and unsupervised data compression models for pore pressure prediction employing drilling, petrophysical,... - July 12th, 2025 [July 12th, 2025]
- Machine learning identifies lipid-associated genes and constructs diagnostic and prognostic models for idiopathic pulmonary fibrosis - Orphanet... - July 12th, 2025 [July 12th, 2025]
- An evaluation methodology for machine learning-based tandem mass spectra similarity prediction - BMC Bioinformatics - July 12th, 2025 [July 12th, 2025]
- The Rise of AI in Trading: Machine Learning and the Stock Market - Disruption Banking - July 12th, 2025 [July 12th, 2025]
- Integrative analysis identifies IL-6/JUN/MMP-9 pathway destroyed blood-brain-barrier in autism mice via machine learning and bioinformatic analysis -... - July 12th, 2025 [July 12th, 2025]
- Interpretive prediction of hyperuricemia and gout patients via machine learning analysis of human gut microbiome - BMC Microbiology - July 10th, 2025 [July 10th, 2025]
- Machine learning-based identification of key factors and spatial heterogeneity analysis of urban flooding: a case study of the central urban area of... - July 10th, 2025 [July 10th, 2025]
- Developing machine learning frameworks to predict mechanical properties of ultra-high performance concrete mixed with various industrial byproducts -... - July 10th, 2025 [July 10th, 2025]
- Small Drones Market Trend Analysis and Forecast Report 2025-2034 | AI and Machine Learning Revolutionizing Autonomous Operations, Trade Tariffs Push... - July 10th, 2025 [July 10th, 2025]
- When a model touches millions: Hatim Kagalwala on accuracy accountability, and applied machine learning - Dataconomy - July 10th, 2025 [July 10th, 2025]
- New Study Uses Gait Data and Machine Learning for Early Detection of Anxiety and Depression - AZoSensors - July 10th, 2025 [July 10th, 2025]
- Machine Learning and the Evolution of Mobile Apps - CIO Applications - July 10th, 2025 [July 10th, 2025]
- Artificial Intelligence, Machine Learning, and Big Data in Thailand: Legal and Regulatory Developments 2025 - Lexology - July 10th, 2025 [July 10th, 2025]
- Karen Hao on how the AI boom became a new imperial frontier - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Machine Learning and AI in Enhancing Image Analysis of 3D Samples - Drug Target Review - July 8th, 2025 [July 8th, 2025]
- Gartner Predicts Over 40% of Agentic AI Projects Will Be Canceled by End of 2027 - Machine Learning Week 2025 - July 8th, 2025 [July 8th, 2025]
- Explainable machine learning model for predicting the transarterial chemoembolization response and subtypes of hepatocellular carcinoma patients - BMC... - July 8th, 2025 [July 8th, 2025]
- Identification and validation of glucocorticoid receptor and programmed cell death-related genes in spinal cord injury using machine learning - Nature - July 8th, 2025 [July 8th, 2025]
- Multiclass leukemia cell classification using hybrid deep learning and machine learning with CNN-based feature extraction - Nature - July 6th, 2025 [July 6th, 2025]
- Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm... - July 6th, 2025 [July 6th, 2025]