Orange isn’t building its own AI foundation model here’s why – Light Reading
There has been a flurry of interest in generative AI (GenAI) from telcos, each of which has taken its own nuanced approach to the idea of building its own large language models (LLMs). While Vodafone seems todismiss the ideaand Verizon appears content to build on existing foundation models, Deutsche Telekom and SK Telecomannounced last yearthey will develop telco-specific LLMs. Orange, meanwhile, doesn't currently see the need to build a foundation model, its chief AI officer Steve Jarrett has recently told Light Reading.
Jarrett said the company is currently content with using existing models and adapting them to its needs using two main approaches. The first one is retrieval-augmented generation (RAG), where a detailed source of information is passed to the model together with the prompt to augment its response.
He said this allows the company to experiment with different prompts easily, adding that existing methodologies can be used to assess the results. "That is a very, very easy way to dynamically test different models, different styles of structuring the RAG and the prompts. And [] that solves the majority of our needs today," he elaborated.
At the same time, Jarrett admitted that the downside of RAG is that it may require a lot of data to be passed along with the prompt, making more complex tasks slow and expensive. In such cases, he argued, fine-tuning is a more appropriate approach.
Distilling models
In this case, he explained, "you take the information that you would have used in the RAG for [] a huge problem area. And you make a new version of the underlying model that embeds all that information." Another related option is to distill the model.
This involves not just structuring the output of the model, but downsizing it, "like you're distilling fruit into alcohol," Jarrett said, adding "there are techniques to actually chop the model down into a much smaller model that runs much faster."
This approach is, however, highly challenging. "Even my most expert people frequently make mistakes," he admitted, saying: "It's not simple, and the state of the art of the tools to fine tune are changing every single day." At the same time, he noted that these tools are improving constantly and, as a result, he expects fine-tuning to get easier over time.
He pointed out that building a foundation model from scratch would be an even more complex task, which the company currently doesn't see a reason to embark on. Nevertheless, he stressed that it's impossible to predict how things will evolve in the future.
Complexity budget
One possibility is that big foundational models will eventually absorb so much information that the need for RAG and other tools will diminish. In this scenario, Orange may never have to create its own foundation model, Jarrett said, "as long as we have the ability to distill and fine tune models, where we need to, to make the model small enough to run faster and cheaper and so on."
He added: "I think it's a very open question in the industry. In the end, will we have a handful of massive models, and everyone's doing 99% RAG and prompt engineering, or are there going to be millions of distilled and fine-tuned models?"
One factor that may determine where things will go in the future is what Jarrett calls the complexity budget. This is a concept that conveys how much computing was needed from start to finish to produce an answer.
While a very large model may be more intensive to train in the beginning, there may be less computing required for RAG and fine-tuning. "The other approach is you have a large language model that also obviously took a lot of training, but then you do a ton more compute to fine tune and distill the model so that your model is much smaller," he added.
Apart from cost, there is also an environmental concern. While hyperscalers tend to perform relatively well in terms of using clean energy, and Jarrett claimed that Orange is "fairly green as a company," he added that the carbon intensity of the energy used for on-premises GPU clusters tends to vary in the industry.
Right tool for the job
The uncertainty surrounding GenAI's future evolution is one of the reasons why Orange is taking a measured approach to the technology, with Jarrett stressing it is not a tool that's suited to every job. "You don't want to use the large language model sledge hammer to hit every nail," he said.
"I think, fairly uniquely compared to most other telco operators, we actually have the ability, the skill inside of Orange to help make these decisions about what tool to use when. So we prefer to use a statistical method or basic machine learning to solve problems because those results are more [] explainable. They're usually cheaper, and they're usually less impactful on the environment," he added.
In fact, Jarrett says one of the things Orange is investigating at the moment is how to use multiple AI models together to solve problems. The notion, he added, is called agents, and refers to a high-level abstraction of a problem, such as asking how the network in France is working on a given day. This, he said, will enable the company to solve complex problems more dynamically.
In the meantime, the company is making a range of GenAI models available to its employees, including ChatGPT, Dolly and Mistral. To do so, it has built a solution that Jarrett says provides a "secure, European-resident version of leading AI models that we make available to the entire company."
Improving customer service
Jarrett says this is a more controlled and safer way for employees to use models than if they were accessed directly. The solution also notifies the employee of the cost of running a specific model to answer a question. Available for several months, it has so far been used by 12% of employees.
Orange has already deployed GenAI in many countries within its customer service solutions to predict what the most appealing offer may be to an individual customer, Jarrett said, adding "what we're trialling right now is can generative AI help us to customize and personalize the text of that offer? Does that make the offer incrementally more appealing?"
Another potential use case is in transcribing a conversation with a customer care agent in real time, using generative AI to create prompts. The tool is still in development but could help new recruits to improve faster, raising employee and customer satisfaction, said Jarrett.
While Orange doesn't currently use GenAI for any use cases in the network, some are under development, although few details are being shared at this stage. One use case involves predicting when batteries at cell sites may need replacing.
Jarrett admits, however, that GenAI is still facing a number of challenges, such as hallucinations. "In a scenario where the outputs have to be correct 100% of the time, we're not going to use generative AI for that today, because [it's] not correct 100% of the time," he said.
Dealing with hallucinations
Yet it can be applied in areas that are less sensitive. "For example, if for internal use you want to have a summary of an enormous transcript of a long meeting that you missed, it's okay if the model hallucinates a little bit," he added.
Hallucinations cannot be stopped entirely and will likely continue to be a problem for some time, said Jarrett. But he believes RAG and fine-tuning could mitigate the issue to some extent.
"The majority of the time, if we're good at prompt engineering and we're good at passing the appropriate information with the response, the model generates very, very useful, relevant answers," Jarrett said about the results achieved with RAG.
The availability and quality of data is another issue that is often discussed, and also one that Orange is trying to address. Using data historically kept in separate silos has been difficult, said Jarrett. "[The] availability of the data from the marketing team to be able to run a campaign on where was our network relatively strong, for example those use cases were either impossible, or took many, many, many months of manual meetings and collaboration."
As a result, the company is trying to create a marketplace where data is made widely available inside each country and appropriately labeled. Orange calls this approach data democracy.
Continued here:
Orange isn't building its own AI foundation model here's why - Light Reading
- Infleqtion Secures $2M U.S. Army Contract to Advance Contextual Machine Learning for Assured Navigation and Timing - Yahoo Finance - December 12th, 2025 [December 12th, 2025]
- A county-level machine learning model for bottled water consumption in the United States - ESS Open Archive - December 12th, 2025 [December 12th, 2025]
- Grainge AI: Solving the ingredient testing blind spot with machine learning - foodingredientsfirst.com - December 12th, 2025 [December 12th, 2025]
- Improved herbicide stewardship with remote sensing and machine learning decision-making tools - Open Access Government - December 12th, 2025 [December 12th, 2025]
- Hero Medical Technologies Awarded OTA by MTEC to Advance Machine Learning and Wearable Sensing for Field Triage - PRWeb - December 12th, 2025 [December 12th, 2025]
- Lieprune Achieves over Compression of Quantum Neural Networks with Negligible Performance Loss for Machine Learning Tasks - Quantum Zeitgeist - December 12th, 2025 [December 12th, 2025]
- WFS Leverages Machine Learning to Accurately Forecast Air Cargo Volumes and Align Workforce Resources - Metropolitan Airport News - December 12th, 2025 [December 12th, 2025]
- "Emerging AI and Machine Learning Technologies Revolutionize Diagnostic Accuracy in Endoscope Imaging" - GlobeNewswire - December 12th, 2025 [December 12th, 2025]
- Study Uses Multi-Scale Machine Learning to Classify Cognitive Status in Parkinsons Disease Patients - geneonline.com - December 12th, 2025 [December 12th, 2025]
- WFS uses machine learning to forecast cargo volumes and staffing - STAT Times - December 12th, 2025 [December 12th, 2025]
- Portfolio Management with Machine Learning and AI Integration - The AI Journal - December 12th, 2025 [December 12th, 2025]
- AI, Machine Learning to drive power sector transformation: Manohar Lal - DD News - December 7th, 2025 [December 7th, 2025]
- AI WebTracker and Machine-Learning Compliance Tools Help Law Firms Acquire High-Value Personal Injury Cases While Reducing Fake Leads and TCPA Risk -... - December 7th, 2025 [December 7th, 2025]
- AI AND MACHINE LEARNING BASED APPLICATIONS TO PLAY PIVOTAL ROLE IN TRANSFORMING INDIAS POWER SECTOR, SAYS SHRI MANOHAR LAL - pib.gov.in - December 7th, 2025 [December 7th, 2025]
- AI and Machine Learning to Transform Indias Power Sector, Says Manohar Lal - The Impressive Times - December 7th, 2025 [December 7th, 2025]
- Exploring LLMs with MLX and the Neural Accelerators in the M5 GPU - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- Machine learning model for HBsAg seroclearance after 48-week pegylated interferon therapy in inactive HBsAg carriers: a retrospective study - Virology... - November 23rd, 2025 [November 23rd, 2025]
- IIT Madras Free Machine Learning Course 2026: What to know - Times of India - November 23rd, 2025 [November 23rd, 2025]
- Towards a Better Evaluation of 3D CVML Algorithms: Immersive Debugging of a Localization Model - Apple Machine Learning Research - November 23rd, 2025 [November 23rd, 2025]
- A machine-learning powered liquid biopsy predicts response to paclitaxel plus ramucirumab in advanced gastric cancer: results from the prospective IVY... - November 23rd, 2025 [November 23rd, 2025]
- Monitoring for early prediction of gram-negative bacteremia using machine learning and hematological data in the emergency department - Nature - November 23rd, 2025 [November 23rd, 2025]
- Development and validation of an interpretable machine learning model for osteoporosis prediction using routine blood tests: a retrospective cohort... - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Snowflake - November 23rd, 2025 [November 23rd, 2025]
- Rethinking Revenue: How AI and Machine Learning Are Unlocking Hidden Value in the Post-Booking Space - Aviation Week Network - November 23rd, 2025 [November 23rd, 2025]
- Machine Learning Prediction of Material Properties Improves with Phonon-Informed Datasets - Quantum Zeitgeist - November 23rd, 2025 [November 23rd, 2025]
- A predictive model for the treatment outcomes of patients with secondary mitral regurgitation based on machine learning and model interpretation - BMC... - November 23rd, 2025 [November 23rd, 2025]
- Mobvista (1860.HK) Delivers Solid Revenue Growth in Q3 2025 as Mintegral Strengthens Its AI and Machine Learning Technology - Business Wire - November 23rd, 2025 [November 23rd, 2025]
- Machine learning beats classical method in predicting cosmic ray radiation near Earth - Phys.org - November 23rd, 2025 [November 23rd, 2025]
- Top Ways AI and Machine Learning Are Revolutionizing Industries in 2025 - nerdbot - November 23rd, 2025 [November 23rd, 2025]
- Snowflake Supercharges Machine Learning for Enterprises with Native Integration of NVIDIA CUDA-X Libraries - Yahoo Finance - November 18th, 2025 [November 18th, 2025]
- An interpretable machine learning model for predicting 5year survival in breast cancer based on integration of proteomics and clinical data -... - November 18th, 2025 [November 18th, 2025]
- scMFF: a machine learning framework with multiple feature fusion strategies for cell type identification - BMC Bioinformatics - November 18th, 2025 [November 18th, 2025]
- URI professor examines how machine learning can help with depression diagnosis Rhody Today - The University of Rhode Island - November 18th, 2025 [November 18th, 2025]
- Predicting drug solubility in supercritical carbon dioxide green solvent using machine learning models based on thermodynamic properties - Nature - November 18th, 2025 [November 18th, 2025]
- Relationship between C-reactive protein triglyceride glucose index and cardiovascular disease risk: a cross-sectional analysis with machine learning -... - November 18th, 2025 [November 18th, 2025]
- Using machine learning to predict student outcomes for early intervention and formative assessment - Nature - November 18th, 2025 [November 18th, 2025]
- Prevalence, associated factors, and machine learning-based prediction of probable depression among individuals with chronic diseases in Bangladesh -... - November 18th, 2025 [November 18th, 2025]
- Snowflake supercharges machine learning for enterprises with native integration of Nvidia CUDA-X libraries - MarketScreener - November 18th, 2025 [November 18th, 2025]
- Unlocking Cardiovascular Disease Insights Through Machine Learning - BIOENGINEER.ORG - November 18th, 2025 [November 18th, 2025]
- Machine learning boosts solar forecasts in diverse climates of India - researchmatters.in - November 18th, 2025 [November 18th, 2025]
- Big Data Machine Learning In Telecom Market by Type and Application Set for 14.8% CAGR Growth Through 2033 - openPR.com - November 18th, 2025 [November 18th, 2025]
- How Humans Could Soon Understand and Talk to Animals, Thanks to Machine Learning - SYFY - November 10th, 2025 [November 10th, 2025]
- Machine learning based analysis of diesel engine performance using FeO nanoadditive in sterculia foetida biodiesel blend - Nature - November 10th, 2025 [November 10th, 2025]
- Machine Learning in Maternal Care - Johns Hopkins Bloomberg School of Public Health - November 10th, 2025 [November 10th, 2025]
- Machine learning-based differentiation of benign and malignant adrenal lesions using 18F-FDG PET/CT: a two-stage classification and SHAP... - November 10th, 2025 [November 10th, 2025]
- How to Better Use AI and Machine Learning in Dermatology, With Renata Block, MMS, PA-C - HCPLive - November 10th, 2025 [November 10th, 2025]
- Avoiding Catastrophe: The Importance of Privacy when Leveraging AI and Machine Learning for Disaster Management - CSIS | Center for Strategic and... - November 10th, 2025 [November 10th, 2025]
- Efferocytosis-related signatures identified via Single-cell analysis and machine learning predict TNBC outcomes and immunotherapy response - Nature - November 10th, 2025 [November 10th, 2025]
- Arc Raiders' use of AI highlights the tension and confusion over where machine learning ends and generative AI begins - PC Gamer - November 3rd, 2025 [November 3rd, 2025]
- From performance to prediction: extracting aging data from the effects of base load aging on washing machines for a machine learning model - Nature - November 3rd, 2025 [November 3rd, 2025]
- Meet 'kvcached': A Machine Learning Library to Enable Virtualized, Elastic KV Cache for LLM Serving on Shared GPUs - MarkTechPost - October 28th, 2025 [October 28th, 2025]
- Bayesian-optimized machine learning boosts actual evapotranspiration prediction in water-stressed agricultural regions of China - Nature - October 28th, 2025 [October 28th, 2025]
- Using machine learning to shed light on how well the triage systems work - News-Medical - October 28th, 2025 [October 28th, 2025]
- Our Last Hope Before The AI Bubble Detonates: Taming LLMs - Machine Learning Week US - October 28th, 2025 [October 28th, 2025]
- Using multiple machine learning algorithms to predict spinal cord injury in patients with cervical spondylosis: a multicenter study - Nature - October 28th, 2025 [October 28th, 2025]
- The diagnostic potential of proteomics and machine learning in Lyme neuroborreliosis - Nature - October 28th, 2025 [October 28th, 2025]
- Using unsupervised machine learning methods to cluster cardio-metabolic profile of the middle-aged and elderly Chinese with general and central... - October 28th, 2025 [October 28th, 2025]
- The prognostic value of POD24 for multiple myeloma: a comprehensive analysis based on traditional statistics and machine learning - BMC Cancer - October 28th, 2025 [October 28th, 2025]
- Reducing inequalities using an unbiased machine learning approach to identify births with the highest risk of preventable neonatal deaths - Population... - October 28th, 2025 [October 28th, 2025]
- Association between SHR and mortality in critically ill patients with CVD: a retrospective analysis and machine learning approach - Diabetology &... - October 28th, 2025 [October 28th, 2025]
- AI-Powered Visual Storytelling: How Machine Learning Transforms Creative Content Production - About Chromebooks - October 28th, 2025 [October 28th, 2025]
- How beauty brand Shiseido nearly tripled revenue per user with machine learning - Performance Marketing World - October 28th, 2025 [October 28th, 2025]
- Magnite introduces machine learning-powered ad podding for streaming platforms - PPC Land - October 26th, 2025 [October 26th, 2025]
- Krafton is an AI first company and will invest 70M USD on machine learning - Female First - October 26th, 2025 [October 26th, 2025]
- Machine learning prediction of bacterial optimal growth temperature from protein domain signatures reveals thermoadaptation mechanisms - BMC Genomics - October 24th, 2025 [October 24th, 2025]
- Data Proportionality and Its Impact on Machine Learning Predictions of Ground Granulated Blast Furnace Slag Concrete Strength | Newswise - Newswise - October 24th, 2025 [October 24th, 2025]
- The Evolution of Machine Learning and Its Applications in Orthopaedics: A Bibliometric Analysis - Cureus - October 24th, 2025 [October 24th, 2025]
- Sentiment Analysis with Machine Learning Achieves 83.48% Accuracy in Predicting Consumer Behavior Trends - Quantum Zeitgeist - October 24th, 2025 [October 24th, 2025]
- Use of machine learning for risk stratification of chest pain patients in the emergency department - BMC Medical Informatics and Decision Making - October 24th, 2025 [October 24th, 2025]
- Mass spectrometry combined with machine learning identifies novel protein signatures as demonstrated with multisystem inflammatory syndrome in... - October 24th, 2025 [October 24th, 2025]
- How Machine Learning Is Shrinking to Fit the Sensor Node - All About Circuits - October 24th, 2025 [October 24th, 2025]
- Machine learning models for mechanical properties prediction of basalt fiber-reinforced concrete incorporating graphical user interface - Nature - October 24th, 2025 [October 24th, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News NY1 - October 24th, 2025 [October 24th, 2025]
- Itron Partners with Gordian Technologies to Enhance Grid Edge Intelligence with AI and Machine Learning Solutions - Quiver Quantitative - October 24th, 2025 [October 24th, 2025]
- Wearable sensors and machine learning give leg up on better running data - Medical Xpress - October 23rd, 2025 [October 23rd, 2025]
- Geophysical-machine learning tool developed for continuous subsurface geomaterials characterization - Phys.org - October 23rd, 2025 [October 23rd, 2025]
- Ohio wins national cybersecurity award for fraud solutions using machine learning - Spectrum News 1 - October 23rd, 2025 [October 23rd, 2025]
- Machine learning predictions of climate change effects on nearly threatened bird species ( Crithagra xantholaema) habitat in Ethiopia for conservation... - October 23rd, 2025 [October 23rd, 2025]
- A machine learning tool for predicting newly diagnosed osteoporosis in primary healthcare in the Stockholm Region - Nature - October 23rd, 2025 [October 23rd, 2025]
- ECBs New Perspective on Machine Learning in Banking - KPMG - October 23rd, 2025 [October 23rd, 2025]